HoH: COL331/COL633 Labs

What'’s the best way for learning OS? Create one!

Jan 1, 2017

Shell
Threads
Concurrency
UserProgram
VirtualMem

Shell Again

Also available in pdf, slides. beamer. latex.

index.slides.html
index.tex

Introduction

Introduction

Hello! I'm your lab-instructor for this course.

In this series, you will join forces with me, and together, we will build
a kernel from the scratch. We both will be working on this kernel.
I'll do some coding in a branch, and ask you to implement some
functionality. You can get my code by merging the branch with
yours, and implement the functionality | asked. Once you implement
it and commit the changes in your repository, I'll again work on the
kernel on some other branch..

Status so far - our kernel boots into C code
So far, | have managed to write: See osdev barebones

1. x86/boot.S : containing seven lines of 32-bit x86 assembly
instructions to:
> set the stack pointer,
movl $tmpstack_bottom, %esp

> clear flags,

http://wiki.osdev.org/Bare_bones
http://www.gnu.org/software/grub/manual/multiboot/multiboot.pdf

Setup

So here’s what you should do:

Tools
Please ensure you have latest version of:

gemu (package: gemu gemu-system)

g++ (package: g++-multilib >=4.7)

git (package: git-all)

grub2 (package: grub2 grub-pc-bin)

boost library (package: libboost-all-dev)

xorriso (to create iso image. Otherwise you'll get a warning
that)

» coreutils(for makefile)

vV VvV VY VY VY

In debian/ubuntu, do:

bash$ sudo apt-get install gemu gemu-system g++-multilil

Clone the repository
Since we both will work on this kernel, we need to have a version

—

Shell

MMIO

MergeRequest

I've added few more code in origin/vgatext branch. Please merge it
with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/vgatext

Aim
In this part, we'll program a memory mapped device while enhancing
our kernel by adding the functionality to display “Hello, world!".

Information

In VGA text mode, 16 bit (2 bytes) of information is stored for each
screen character and is stored in row-major order. First byte(MSB)
is the ASCII code of the screen character and the next byte(LSB)
encodes background(4 bit: msb) and foreground color(4 bit: Isb).
Color: 0x0 corresponds to black pallete, 0x7 corresponds to white
pallete, Ox1 corresponds to blue pallete.

PMIO

MergeRequest

Now it's my turn. I've added few more code in origin/serial branch.
Please merge it with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/serial

Aim

In this part, we'll program an |/O mapped device while enhancing
our kernel by adding debugging routines which will print debug
messages to serial port.

Information

Serial port aka pc16550d uart(universal asynchronous receiver
transmitter). In pc16550d uart,

Registers:

» the “transmitter holding" register of size 8 bits(1 byte) is I/O
mapped at zeroth offset, and

~ P~ 1 e a0 N e a A~

Abstract mmio/pmio

MergeRequest

I've added few more code in origin/keyboard branch. Please merge
it with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/keyboard

Aim

In this part, we'll look at one way of abstracting out details of
mmio::read8 vs io::read8 while enhance our kernel by adding a
simple keyboard driver.

Information
In Keyboard(8042, name=Ipc_kbd), there are two main registers

> status register: size="8 bits” The status register has several
fields

name="perr", size="1 bit", description="Parity
name="timeout", size="1 bit", description="General

kShell

MergeRequest

I've added few more code in origin/shell branch. Please merge it
with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/shell

Aim
In this part, we'll look at one design approach while implementing a
toy shell supporting builtin functions only.

> You need to implement the shell by implementing the given
interfaces(in labs/shell.h and labs/shell.cc).

> You are not allowed to modify the interface and it's usage in
x86/main.cc.

» You are not allowed to use any global variables or static
variables in your functions.

» To make sure we have a personalized Ul for each student,
exact user interface is onpen - So be creative!

Threads

Stackless Coroutine

MergeRequest

I've added few more code in origin/coroutine branch. Please merge
it with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/coroutine

Aim

In this part, we'll learn about "“asymmetric-stackless coroutines”
while enhancing our kernel to make it responsive to key presses
while long computation task is running.

» You shall implement the long computation task as a stackless
coroutine using the given APls and add a new menu
item /builtin command for the same.

» On key press, the status bar shall be updated with ‘the number
of keys pressed so far’ while this long computation task is
running(not after it finishes).

» |f we select older menu item shell still take seconds to respond

http://books.google.co.in/books?id=bIAxhJor1EYC&printsec=frontcover
http://books.google.co.in/books?id=bIAxhJor1EYC&printsec=frontcover
http://dl.acm.org/citation.cfm?id=1462167
http://isocpp.org/files/papers/n3985.pdf
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.boost.org/doc/libs/1_57_0/libs/coroutine/doc/html/index.html
http://www.boost.org/doc/libs/1_57_0/libs/coroutine/doc/html/index.html
http://dunkels.com/adam/pt/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4287.pdf

Fiber
MergeRequest

I've added few more code in origin/fiber branch. Please merge it
with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/fiber

Aim
In this part, we'll learn about “fibers” while enhancing our kernel to

make it responsive to key presses while long computation task is
running.

» You shall implement the long computation task as a fiber using
the given APIs and add a new menu item/builtin command for
the same.

» On key press, the status bar shall be updated with ‘the number
of keys pressed so far’ while this long computation task is
running(not after it finishes).

» Result of all three menu items should be same.

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Non-preemptive scheduling

MergeRequest

I've added few more code in origin/fiber_scheduler branch. Please
merge it with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/fiber_schedu!

Aim

In this part, we'll learn about non-preemptive sheduling while
enhancing our shell to support multiple pending long computation
task.

» You will need to support at least two additional long
computation tasks. Now that you have implemented fibers,
your computational tasks could involve the use of stack. For
example, you can implement a recursive implementation of the
fibonacci series computation, which has exponential complexity.

» For these additional long computation tasks:

U V7 P | R SR I S [[[T T S R

Preemption (threads)

MergeRequest
I've added few more code in origin/preemption branch. Please
merge it with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/preemption

Aim
In this part, we'll learn about “preemption” while enhancing our
kernel to make it responsive to key presses while long computation

task is running.

» You shall enhance the fiber implementation by adding
preemption.
> You need to write a part of trap handler - ring0_preempt -
which should switch stack to ‘main_stack’
» We would like to reuse shell_step_fiber_scheduler to do the
scheduling.

http://www.cse.iitd.ac.in/~deepak/hohlabs/intel.pdf
http://www.cse.iitd.ac.in/~deepak/lab1/intel.pdf
http://www.cse.iitd.ac.in/~deepak/hohlabs/intel.pdf
http://www.cse.iitd.ac.in/~deepak/hohlabs/intel.pdf
http://www.cse.iitd.ac.in/~deepak/hohlabs/intel.pdf

Concurrency

SPSC Queue: Execute task on remote core

MergeRequest
I've added few more code in origin/multicore branch. Please merge
it with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/multicore

Aim

In this part, we'll learn about multicore programming by
implementing a SPSC queue and use it to send messages between
two cores.

» |'ve modified the apps/labs.cc to execute the render() function
in another core. The output of shell_render() - renderstate_t
object - will be send to core #1 using the SPSQ queue. And
core #1, will call the render() when it receives the
renderstate_t object. Note: this means you won't see shell
untill you implement SPSC queue correctly.

» You'll have to imbplement Leslie | ambport's portable lock-free

UserProgram

Ring3
MergeRequest

I've added few more code in origin/ring3 branch. Please merge it
with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/ring3

Aim

In this part, we'll learn about ELF headers, page table handling and
user mode switching while enhancing our kernel to load arbitary user
program and execute it.

» You need to implement elf loader (elf_load_function):

» You shall only support loading of Position Independent
Executable.

» The entire program memory code address space shall be read
only. You can safely ignore the flags in ELF and override with
‘WRITE' = 0 flags in page table for code segments.

» The entire program memory address space shall fit into a single

Ring3 Preemption

MergeRequest

I've added few more code in origin/ring3 branch. Please merge it
with your master branch

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/ring3

Aim

In this part, we'll learn about preempting user program while
enhancing our kernel to make it responsive to key presses while long
computation task is running in ring3/user mode.

» We'll have single kernel stack for the all user processes.

> Note: On timer interrupt, hardware will automatically switch to
main_stack. and ring3_preempt macro will eventually be
called.

» You need to write a part of trap handler - ring3_preempt -
which should:

P [. T T T T TR R T SR T

Upcall /Signals
MergeRequest

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/ring3

Aim

In this part, we'll learn about upcalls (passing information to the
exception handler running in user mode) by letting the user process
manage the exceptions(like INT3, page faults etc).

» Whenever exception occur, You need to:

» we had already allocated emergency stack at the end of the
page shared between kernel and user in 4.1

» setup the emergency stack layout correctly (as explained below)
at the end of this page

> Set the esp to this allocated emergency stack

» Set the eip to proc.startip+4.

» all other register values including eflags shall remain unchanged

» user's exception handler is located at start+4. ie.

Downcall /System call
MergeRequest

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/ring3

Aim
In this part, we'll learn about downcalls/system calls by

implementing following system calls: - You need to define the
following function: system__call();

0. nop: no-operation/do-nothing
» do-nothing

» System call should NOT modify/write to the system call
memory. (See Tip)

nop()

1. done: done/exit.

» mark the process as done(proc->state=PROC_DONE). process
shouldn’t be scheduled after this. So make sure, in your

VirtualMem

App: Virtual Memory
MergeRequest

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/ring3

Aim
In this part, we'll learn about virtual memory by emulating an array
of N, virtual pages using N, physical pages.
> Note: There is a change : N, = 16 and N, = 4 instead of
N, =16 and N, = 8. le. you need to emulate 16 page
array using 4 physical pages. not 8
> Please read lecture videos on demand paging and page
replacement policy.
» You need to emulate an array of size N, pages, say varray.
Starting address of varray shall be 2GB ie. 2u<<30.

» N, =16 and N, =4

Shell Again

App: Shell in user mode

Congrats on making it so far! It's been a pleasure working with you.
Hope you enjoyed it as well!
Let's try to summarize the plot:

» You wrote a shell in kernel mode.

» Then | split the shell into two and rendered the Ul on another
core.

» Now |'ve moved your shell into user mode.

» And then I'll split the user shell into two and render the Ul on
another process.

In short: - You've implemented kernel coroutines, kernel threads and
a kernel thread scheduler. And implmented a kernel application -

shell. - You also have implemented user coroutines, user threads and
a user thread scheduler. And implemented a user application - shell.

Shell is already done for you! Your shell which you implemented in
part 1.4 is already moved to user mode as an application. So the
role has been revereed - whatever you've done till parts 1.9 are now
in user mode. And parts 1.10 - parts 1.13 are in kernel.

MergeRequest

user@host:~/hohlabs$ git pull
user@host:~/hohlabs$ git merge origin/ring3_shell

Aim
Get User shell working

Please don’t make the source code public even after you
finish this course - The code you been working on is part of
Deepak Ravi's PhD. We hope to release the code under AGPL3
licence (Current LICENSE doesn’t allow the code). Till then please
don’t publish.

End of lab

Please make sure you submit the feedback form
Regards,

DR H

Hoh labs

	Shell
	Threads
	Concurrency
	UserProgram
	VirtualMem
	Shell Again

