COL331/COL633 Minor2 Exam
Operating Systems
Sem I, 2016-17
Answer all 8 questions Max. Marks: 25

1. True/False. Copy-on-write allows faster implementation of UNIX’s fork() system call.
Briefly explain. (No marks if incorrect explanation). [2]

Answer: True

Due to copy on write optimization, only some of the pages (that are written by the child
process) need to be copied from the parent to the child. All other pages can be shared
between the parent and child (including pages that are never accessed, and pages that are
accessed in read-only mode, e.g., code/rodata pages).

ro_— ~I~—__ro
;"/ \\x
— - I
Hﬁm“_ﬁ“‘w -af"'s:;ifﬁ -
ro — ,,ﬂ/ﬂj//
P1's VAS Shared PAS P2's VAS
Parent Process Child Process

Shared pages are made read-only.

/I 0.5 marks if explained COW only.
/I 2 marks if explained how COW improves fork() performance

2. True/False. Different virtual addresses in the same page table (belonging to a single
process) could point to the same physical memory address. In other words, is it possible for
two different virtual addresses VA1 and VA2 (both in the same page table PT) to point to the
same physical address PA. Briefly explain when this could happen, with example from real
operating systems. (No marks if incorrect example/explanation). [3]



True. A page allocated to the user process, would be mapped both in the kernel side and
the user side at the same time in xv6, Linux, Windows (all monolithic kernels). [3 marks if
correctly answered]

Another answer (incorrect): In XV6, when the paging is enabled at line 1152, a temporary
page table is created with both the 0th and 512th entry of the page table pointing to location
0 in the physical address space. This is because both 0 to 4 MB and 2 GB to (2 GB + 4 MB)
in the virtual address space are mapped to the same memory location (0 to 4 MB) in the
physical address space.

Hence, it is possible for two virtual addresses VA1 and VA2 to point to the same physical
address PA.

2 GB+4 MB
2 GB
4 MB \ 4MB
0 . 0

VAS PAS

This answer is incorrect because this page table is not for a “process”. This page table is

only a temporary page table, and processes have not been created yet. Still, award 2 marks
for such an answer.

3. True/False. Different virtual addresses in different page tables (belong to two different
processes) could point to the the same physical memory address. In other words, is it
possible for two different virtual addresses VA1 and VA2, belonging to different page tables,
PT1 and PT2 respectively, to point to the same physical address PA. Notice that the virtual
addresses VA1 and VA2 must be different. Briefly explain when this could happen, with
example from real operating systems. (No marks if incorrect example/explanation). [3]

Answer: True.

Multiple possible answers:



1. This is possible when two or more processes have shared libraries and hence shared
pages.

2. The mapping for the user pages in one process would also be mapped on the kernel side
in another process’s page table in xv6, Linux, Windows

Full marks if any of these mentioned.

4. Mention two advantages of paging over segmentation, and two advantages of
segmentation over paging (briefly). [2]

Answer:

Paging over segmentation -
1. No external fragmentation.
2. Non-contiguous allocation of pages solves the problem of segment outgrowth.
3. Allows demand paging and more efficient swapping.
4. Allows sharing (copy-on-write) optimizations.

Segmentation over paging -
1. Less hardware complexity (lower power consumption, less area on chip).
2. Faster VA -> PA translation.

/1 0.5 marks per correct advantage for both paging and segmentation.

5. What are some important differences between the L1 cache and the Translation
Lookaside Buffer (TLB)? Focus on the most important differences, starting with their
purpose, their organization, and their characteristics. [3]

Answer:
Purpose:

1. TLB - To reduce the number of memory accesses required to do access a memory
location using paging scheme of memory management. TLBs store virtual to physical
address translation for a subset of user process’ pages.

2. L1 Cache - To eliminate the side-effects of speed mismatch between processor and
main memory. L1 cache stores a subset of content currently present in the main
memory.

Organisation:

1. TLBs are organized as caches, if small, and are usually fully associative for high hit
rates. They are generally located on the same chip as processor. They can cache
VA->PA mappings end-to-end.

2. L1 cacheis also located on the same chip as processor and may be split into
instruction and data cache. These can be fully-associative, direct mapped or set
associative.



Characteristics:

1. TLBs typically have 12 to 1024 entries, a hit rate of 99+ percent, a miss penalty of
10-100 cycles, and access time of 0.5-1 cycle. TLB hit rates need to be very high, to
avoid translation overheads

2. L1 cache are typically 32 KB in size and have an access time of 1 ns, and usually
much lower hit rates.

3. On Context Switch : TLB stores VA to PA address translations, hence on every
context switch it needs to be flushed whereas L1 Cache(dependent on the
architecture design) stores PA mapped values hence need not be flushed.

// 1.5 marks for explaining the purpose of both TLB and L1
/I 1 mark for mentioning that TLBs are expected to have higher hit rates
/1 0.5 marks for mentioning that TLB is usually fully associative

6. xv6 : What is the significance of lines 2521-2522 in the userinit function? The lines are
reproduced below. [3]

2521 p->tf->esp = PGSIZE

2522 p->tf->eip =0

Answer:

At this location, the user-side of the address space is mapped with a single page starting at
address 0.

p->tf->esp = PGSIZE sets the esp to point to location marked by the PGSIZE so the stack
can now grow downwards.

p->tf->eip = 0 sets the eip to contain the first instruction of the first user process initcode.S.
So then the execution of initcode.S which is the first user process to run begins from its first
instruction.

K
->tf->esp
PGSIZE
Code + data
+ stack of Stack grows downwards
0 initcode.S

—__ p->tf->eip



/I 1.5 marks per line significance explanation

7. xv6 : Explain the function argint(int n, int *ip) on line 3545.

e Whatis'n’ [0.5]
e Whatis ‘ip’ [0.5]
e Why is it calling fetchint(proc->tf->esp + 4 + 4*n, ip) [2]
e What does fetchint() on line 3516 do? Explain the two checks on line 3519. Why are
they needed? Do we need two checks, or would one check suffice? 2]
Answer:

1. ‘n’: ltis n-th 32-bit system call argument to be fetched.

2. ‘ip’: ltis the location where the n-th argument is to be stored, upon function return (it
is the return value).

3. fetchint(proc->tf->esp + 4 + 4*n, ip)

On xv6, system call arguments are stored on stack. As we are fetching the n-th
argument that was pushed onto the stack, note that arguments are pushed onto the stack in
reverse order and each argument being 32-bit consumes 4 byte on the stack, hence the
location of n-th argument will be
proc->tf->esp + 4 + 4*n .

Note : Syscall name is passed through proc->tf->eax.

proc->tf->esp + 4 + N-th argument
4™n i

(N-1)-th argument

1st argument
roc->tf->esp + 4

P P \ O-th argument

proc-}tf-:*espﬁm return address




4. fetchint() at line 3516 fetches the integer at stored at address ‘addr’ and stores the content
of ‘addr’ at location being pointed to by ‘ip’.

Both the checks at line 3519 are necessary and only one of them will not suffice because
there is a possibility of wrap around of addresses as shown in the figure below:

OxFFFFFFFF B

addr N

Memory-mapped

devices
0xFEQQ00000

proc->sz

addr+4
0

Here addr+4 <= proc->sz but addr >= proc->sz, so if second check is not made
wrong location will be dereferenced.

Similarly,

Memory-mapped
devices

addr+4
proc->sz
addr

Here addr < proc->sz but addr+4 > proc->sz, so if only first check is
made, wrong location would be dereferenced.



Hence, both the checks are necessary.

8. xv6: Look at line 3073 in the kfree() function:

3072 //Fill with junk to catch dangling refs
3073 memset(v, 1, PGSIZE)

The comment says that this call to memset() is supposed to fill the memory region with junk

to catch dangling references. What is a dangling reference? Briefly give an example of how
this command will help to catch a dangling reference. Will the xv6 kernel run correctly if this
line (line 3073) is commented out? [4]

Answer:
A dangling reference is a reference made through an illegal address, i.e., an address that
does not point to a reachable/valid memory location.

The kfree() at line 3064 frees the page of physical memory being pointed at by ‘v'. This page
is then returned when a call to kalloc() is made. A memory location in the page could initially
be pointing to at some other memory location, say one in the DEVSPACE reserved for
memory mapped devices. A reference to this memory location will then become a dangling
reference. [2 marks for these two answers]

OxFFFFFFFF
—
0xFEO00000
Dangling
2GB+4MB Reference
end
2 GB




Assuming that the xv6 kernel has no bugs, xv6 kernel should work correctly even if the line
at 3073 is commented out, because in a correct piece of software, a memory region that has
been freed should not be used/de-referenced. [2 marks]



