
StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks

�

Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton
�

, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle and Qian Zhang

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

immunix-request@cse.ogi.edu, http://cse.ogi.edu/DISC/projects/immunix

Abstract

This paper presents a systematic solution to the per-
sistent problem of buffer overflow attacks. Buffer over-
flow attacks gained notoriety in 1988 as part of the Morris
Worm incident on the Internet. While it is fairly simple
to fix individual buffer overflow vulnerabilities, buffer
overflow attacks continue to this day. Hundreds of at-
tacks have been discovered, and while most of the obvi-
ous vulnerabilities have now been patched, more sophis-
ticated buffer overflow attacks continue to emerge.

We describe StackGuard: a simple compiler technique
that virtually eliminates buffer overflow vulnerabilities
with only modest performance penalties. Privileged pro-
grams that are recompiled with the StackGuard com-
piler extension no longer yield control to the attacker,
but rather enter a fail-safe state. These programs require
no source code changes at all, and are binary-compatible
with existing operating systems and libraries. We de-
scribe the compiler technique (a simple patch to gcc),
as well as a set of variations on the technique that trade-
off between penetration resistance and performance. We
present experimental results of both the penetration resis-
tance and the performance impact of this technique.

�
This research is partially supported by DARPA contracts F30602-

96-1-0331 and F30602-96-1-0302.�
Ryerson Polytechnic University

1 Introduction

This paper presents a systematic solution to the per-
sistent problem of buffer overflow attacks. Buffer over-
flow attack gained notoriety in 1988 as part of the Morris
Worm incident on the Internet [23]. Despite the fact that
fixing individual buffer overflow vulnerabilities is fairly
simple, buffer overflow attacks continue to this day, as re-
ported in the SANS Network Security Digest:

Buffer overflows appear to be the most
common problems reported in May, with
degradation-of-service problems a distant sec-
ond. Many of the buffer overflow problems are
probably the result of careless programming,
and could have been found and corrected by
the vendors, before releasing the software, if
the vendors had performed elementary testing
or code reviews along the way.[4]

The base problem is that, while individual buffer over-
flow vulnerabilities are simple to patch, the vulnerabili-
ties are profligate. Thousands of lines of legacy code are
still running as privileged daemons (SUID root) that
contain numerous software errors. New programs are be-
ing developed with more care, but are often still devel-
oped using unsafe languages such as C, where simple er-
rors can leave serious vulnerabilities.

The continued success of these attacks is also due to
the “patchy” nature by which we protect against such at-
tacks. The life cycle of a buffer overflow attack is simple:
A (malicious) user finds the vulnerabilityin a highly priv-



ileged program and someone else implements a patch to
that particular attack, on that privileged program. Fixes
to buffer overflow attacks attempt to solve the problem at
the source (the vulnerable program) instead of at the des-
tination (the stack that is being overflowed).

This paper presents StackGuard, a systematic solution
to the buffer overflow problem. StackGuard is a simple
compiler extension that limits the amount of damage that
a buffer overflow attack can inflict on a program. Pro-
grams compiled with StackGuard are safe from buffer
overflow attack, regardless of the software engineering
quality of the program.

Section 2 describes buffer overflow attacks in detail.
Section 3 details how StackGuard defends against buffer
overflow attacks. Section 4 presents performance and
penetration testing of StackGuard-enhanced programs.
Section 5 discusses some of the abstract ideas represented
in StackGuard, and their implications. Section 6 de-
scribes related work in defending against buffer overflow
attack. Finally, Section 7 presents our conclusions.

2 Buffer Overflow Attacks

Buffer overflow attacks exploit a lack of bounds check-
ing on the size of input being stored in a buffer array.
By writing data past the end of an allocated array, the at-
tacker can make arbitrary changes to program state stored
adjacent to the array. By far, the most common data struc-
ture to corrupt in this fashion is the stack, called a “stack
smashing attack,” which we briefly describe here, and is
described at length elsewhere [15, 17, 21].

Many C programs have buffer overflow vulnerabil-
ities, both because the C language lacks array bounds
checking, and because the culture of C programmers en-
courages a performance-oriented style that avoids error
checking where possible [14, 13]. For instance, many
of the standard C library functions such as gets and
strcpy do not do bounds checking by default.

The common form of buffer overflow exploitation is
to attack buffers allocated on the stack. Stack smashing
attacks strive to achieve two mutually dependent goals,
illustrated in Figure 1:

Return Address

0x0000

Growth

Stack
Growth Local Variables ...

buffer

Process Address Space

Top of Stack

Attack Code

0xFFFF

String

Figure 1: Stack Smashing Buffer Overflow Attack

Inject Attack Code The attacker provides an input
string that is actually executable, binary code
native to the machine being attacked. Typically
this code is simple, and does something similar to
exec("sh") to produce a root shell.

Change the Return Address There is a stack frame for
a currently active function above the buffer being at-
tacked on the stack. The buffer overflow changes
the return address to point to the attack code. When
the function returns, instead of jumping back to
where it was called from, it jumps to the attack code.

The programs that are attacked using this technique are
usually privileged daemons; programs that run under the
user-ID of root to perform some service. The injected
attack code is usually a short sequence of instructions that
spawns a shell, also under the user-ID of root. The ef-
fect is to give the attacker a shell with root’s privileges.

If the input to the program is provided from a locally
running process, then this class of vulnerability may al-
low any user with a local account to become root. More
distressing, if the program input comes from a network
connection, this class of vulnerability may allow any user
anywhere on the network the ability to become root on
the local host. Thus while new instances of this class of
attack are not intellectually interesting, they are none the
less critical to practical system security.



Engineering such an attack from scratch is non-trivial.
Often, the attacks are based on reverse-engineering the
attacked program, so as to determine the exact offset from
the buffer to the return address in the stack frame, and the
offset from the return address to the injected attack code.
However, it is possible to soften these exacting require-
ments [17]:

� The location of the return address can be approxi-
mated by simply repeating the desired return address
several times in the approximate region of the return
address.

� The offset to the attack code can be approximated by
prepending the attack code with an arbitrary number
of NOP instructions. The overwritten return address
need only jump into the middle of the field of NOPs
to hit the target.

The cook-book descriptions of stack smashing at-
tacks [15, 17, 21] have made construction of buffer-
overflow exploits quite easy. The only remaining work
for a would-be attacker to do is to find a poorly protected
buffer in a privileged program, and construct an exploit.
Hundreds of such exploits have been reported in recent
years [4].

3 StackGuard: Making the Stack Safe for
Network Access

StackGuard is a compiler extension that enhances the
executable code produced by the compiler so that it
detects and thwarts buffer-overflow attacks against the
stack. The effect is transparent to the normal function
of programs. The only way to notice that a program is
StackGuard-enhanced is to cause it to execute C state-
ments with undefined behavior: StackGuard-enhanced
programs define the behavior of writing to the return ad-
dress of a function while it is still active.

As described in Section 2, the common form of buffer-
overflow attacks are stack smashers. They function by
overflowing a buffer that is allocated on the stack, inject-
ing code onto the stack, and changing the return address
to point to the injected code. StackGuard thwarts this

0xFFFF

Process Address Space

Top of Stack

Return Address

Canary Word

Local Variables ...

buffer

0x0000

Stack
Growth

String
Growth

Figure 2: Canary Word Next to Return Address

class of attack by effectively preventing changes to the
return address while the function is still active. If the re-
turn address cannot be changed, then the attacker has no
way of invoking the injected attack code, and the attack
method is thwarted.

StackGuard prevents changes to active return ad-
dresses by either detecting the change of the return ad-
dress before the function returns, or by completely pre-
venting the write to the return address. Detecting changes
to the return address is a more efficient and portable
technique, while preventing the change is more secure.
StackGuard supports both techniques, as well as adap-
tively switching from one mode to the other.

Section 3.1 describes how StackGuard detects changes
to the return address. Section 3.2 describes how Stack-
Guard prevents changes to the return address. Section 3.3
discusses motives and methods for adaptively switching
between techniques.

3.1 Detecting Return Address Change Before
Return

To be effective, detecting that the return address has
been altered must happen before a function returns.
StackGuard does this by placing a “canary”

�

word next
�

A direct descendent of the Welsh miner’s canary.



to the return address on the stack, as shown in Figure 2.
When the function returns, it first checks to see that
the canary word is intact before jumping to the address
pointed to by the return address word.

This approach assumes that the the return address is
unaltered IFF the canary word is unaltered. While this as-
sumption is not completely true in general (stray pointers
can alter any word), it is true of buffer overflow attacks.
The buffer overflow attack method exploits the fact that
the return address word is located very close to a byte ar-
ray with weak bounds checking, so the only tool the at-
tacker has is a linear, sequential write of bytes to mem-
ory, usually in ascending order. Under these restricted
circumstances, it is very difficult to over-write the return
address word without disturbing the canary word.

The StackGuard implementation is a very simple patch
to gcc 2.7.2.2. The gcc function prologue and
function epilogue functions have been altered to
emit code to place and check canary words. The changes
are architecture-specific (in our case, i386), but since
the total changes are under 100 lines of gcc, portabil-
ity is not a major concern. All the changes in the gcc
calling conventions are undertaken by the callee, so code
compiled with the StackGuard-enhanced gcc is com-
pletely inter-operable with generic gcc .o files and li-
braries. The additional instructions added to the function
prologue are shown in pseudo-assembly form in Figure 3,
and the additional instructions added to the instruction
epilogue are shown in Figure 4. Section 4 describes test-
ing and performance of this patch.

3.1.1 Randomizing the Canary

The Canary defense is sufficient to stop most buffer over-
flow attacks that are oblivious to the canary. In fact, sim-
ply changing the compiler’s calling conventions is suf-
ficient to stop most buffer overflow attacks [8]. Most
current buffer overflow attacks are quite brittle, mak-
ing specific, static assumptions about the layout of the
stack frame. However, it is not very hard for attackers
to develop buffer overflows that are insensitive to minor
changes in the stack frame layout [17]:

� To adapt to changes in the location of the return ad-
dress relative to the buffer being overflowed, the at-

tacker can repeat the new value several times in the
input string.

� To adapt to imprecision in the offset of the injected
code from the current program counter, the attacker
can inject attack code consisting of many NOPs, and
simply jump to somewhere in the middle of the NOP
sequence. Control flow will then drop down to the
attack code.

� To adapt to changes in alignment, the attacker need
only guess 4 times at most to get the alignment cor-
rect.

It is also possible to write attacks specifically designed
to overcome StackGuard.

�

There are two ways to over-
come the Canary method of detecting buffer overflows:

1. Skip over the canary word. If the attacker can lo-
cate a poorly checked copy of an array of structs,
which have alignment requirements, and are not big
enough to fulfill the alignment requirements while
densely packing the array, then it is possible that the
copy could occur such that the canary word is in one
of the holes left in the array. We expect this form of
vulnerability to be rare, and difficult to exploit.

2. Simulate the canary word. If the attacker can easily
guess the canary value, then the attack string can in-
clude the canary word in the correct place, and the
check at the end of the function. If the canary word
is completely static, then it is very easy to guess.
This form of attack is problematic.

To deal with easily-guessed canaries, we use randomly
chosen canary values. Our current implementation en-
hances the crt0 library to choose a set of random ca-
nary words at the time the program starts. These random
words are then used as distinct random canary words, one
per function in the object code. While it is not impossible
to guess such a canary value, it is difficult: the attacker
must be able to examine the memory image of the running
process to get the randomly selected word. Even so, a de-
termined attacker could break such a defense eventually;
we discuss our approach to this problem in Section 3.3.

�

Naturally, none have been found to date :-)



move canary-index-constant into register[5]
push canary-vector[register[5]]

Figure 3: Function Prologue Code: Laying Down a Canary

move canary-index-constant into register[4]
move canary-vector[register[4]] into register[4]
exclusive-or register[4] with top-of-stack
jump-if-not-zero to constant address .canary-death-handler
add 4 to stack-pointer
< normal return instructions here>

.canary-death-handler:
...

Figure 4: Function Epilogue Code: Checking a Canary

3.2 Preventing Return Address Changes With
MemGuard

The Synthetix project [18, 1, 2, 24] introduced a no-
tion called “quasi-invariants.” Quasi-invariants are state
properties that hold true for a while, but may change
without notice. Quasi-invariants are used to specify op-
timistic specializations: code optimizations that are valid
only while the quasi-invariants hold. We have extended
this work to treat return addresses on the stack as quasi-
invariant during the activation lifetime of the function.
The return address is read-only (invariant)while the func-
tion is active, thus preventing effective buffer overflow
against the stack.

MemGuard [3] is a tool developed to help debug op-
timistic specializations by locating code statements that
change quasi-invariant values. MemGuard provides fine-
grained memory protection: individualwords of memory
(quasi-invariant terms) can be designated as read-only,
except when explicitly written via the MemGuard API.
We have used MemGuard to produce a more secure, if
less performant, version of the StackGuard compiler.

MemGuard is used to prevent buffer overflow at-
tacks by protecting a return address when a function
is called, and un-protecting the return address when
the function returns. The protection and un-protection
occur in precisely the same places as the canary

push a
push b
move 164 into a
move arg[0] into b
trap 0x80
pop b
pop a

Figure 5: Function Prologue Code: Protecting the Return
Address With MemGuard

placement and checks described in Section 3.1: the
function prologue and function epilogue
functions. Figure 5 shows the prologue code sequence
for MemGuard. The epilogue code sequence is identical,
but uses system call 165 instead of 164.

MemGuard is implemented by marking virtual mem-
ory pages containing quasi-invariant terms as read-only,
and installing a trap handler that catches writes to pro-
tected pages, and emulates the writes to non-protected
words on protected pages. The cost of a write to a
non-protected word on a protected page is approximately
1800 times the cost of an ordinary write. This is an ac-
ceptable cost when quasi-invariant terms are in quiet por-
tions of the kernel’s address space, and when MemGuard
is primarily used for debugging.



This cost is not acceptable when the protected words
are located near the top of the stack, next to some of the
most frequently written words in the program. Mem-
Guard was originally designed to protect variables within
the kernel. To protect the stack, MemGuard had to be ex-
tended in several ways:

� Extend VM model to protect user pages.

� Deal with the performance penalties due to “false
sharing” caused by frequent writes to words near the
return address.

� Provide a light-weight system-call interface to
MemGuard. Loading virtual memory hardware is a
privileged operation, and so the application process
must trap to kernel mode to protect a word.

Most of these extensions are simple software devel-
opment, but the performance problems are challenging.
Fortunately, the Pentium processor has four “debug” reg-
isters. These registers can be configured to watch for
read, write, and execute access to the virtual address
loaded into each register, and generate an exception when
such access occurs.

We use these registers as a cache of the most recently
protected return addresses. The goal is to eliminate the
need for the top-most page of the stack to be read-only,
to eliminate page faults resulting from writes to variables
at the top of the stack. Because of the locality behavior of
stack variables, restoring write privileges to the top of the
stack should handle most of the writes to stack variables.

It is only probabilistically true that protecting the four
most recent return addresses will capture all protection
needs for the top of the stack. However, if the compiler
is adjusted to emit stack frames with a minimum size of
1/4 of a page, then it is always true that 4 registers will
cover the top page. The time/space trade-off implied by
this approach can be continuously adjusted, reducing the
minimum size of stack frames to reduce space consump-
tion, and also increasing the probability that the top page
of the stack actually will require MemGuard protection,
with its associated costs.

3.3 Adaptive Defense Strategies

StackGuard is a product of the Immunix project [11],
whose focus is adaptive responses to security threats.
Thus we provide an adaptive response to intrusions,
switching between the more performant Canary version,
and the more robust MemGuard versions of StackGuard.

The basic model of operation for StackGuard is that
when a buffer overflow is detected, either by the Canary
or by MemGuard, the process is terminated. The process
must exit, because an unknown amount of state has al-
ready been corrupted at the time the attack is detected,
and so it is impossible to safely recover the state of the
process. Thus the process exits, using only static data and
code, so as to avoid any possible corruption from the at-
tacker.

Replacing the dead process is context-dependent. In
many cases, it suffices to just let inetd re-start the dae-
mon when a connection requests service. However, if the
daemon is not managed by inetd, then it may be neces-
sary for a watch-dog process to re-start the daemon, most
especially in the case of inetd itself.

It is also possible for these re-start mechanisms to
adaptively select which form of protection to use next.
The Canary and MemGuard variants of StackGuard of-
fer different points in the trade-off between security and
performance. The Canary version is more performant,
while the MemGuard version is more secure (see Sec-
tion 4). More specifically, the important security vulner-
ability in the Canary variant is that it is potentially subject
to guessing of the canary value. The Canary variant can
defend itself against guessing by exiting, and replacing
the attacked Canary-guarded daemon with a MemGuard-
guarded daemon.

This adaptive response allows systems to run in a rela-
tively high-performance state most of the time, and adap-
tively switch to a lower-performance, higher-security
state when under attack. At worst, the attacker can
carry out a degradation-of-service attack by periodically
attacking daemons, forcing them to run in the lower-
performance MemGuard mode most of the time. How-
ever, service is not totally denied, because the daemons
continue to function, and the attacker no longer is able to
obtain illegitimate privilege via buffer overflow attack.



4 Experimental Results

This section describes experimental evaluation of
StackGuard. Subsection 4.1 describes penetration exper-
iments, to show StackGuard’s effectiveness in deterring
past and future attacks. of Subsection 4.2 describes the
performance cost of StackGuard under various circum-
stances.

4.1 StackGuard Effectiveness

Here we illustrate StackGuard’s effectiveness in
thwarting stack smashing buffer overflow attacks.
StackGuard is intended to thwart generic stack smashing
attacks, even those that have not yet appeared. To
simulate that, we sought out buffer overflow exploits,
and tried them against their intended software targets,
with and without protection from StackGuard. Table 1
summarizes these results.

The programs listed in Table 1 are conventionally in-
stalled as SUID root. If the attacker can get one of
these programs to start a shell, then the attacker gets a
root shell.

In each case, the experiment is to install the vulnerable
program SUID root (SUID httpd for wwwcount)
and attack it with the exploit. We then re-compile the pro-
gram with the Canary variant of StackGuard, re-install
the StackGuard-enhanced program as SUID root, and
attack it again with the exploit. We did not alter the
source code of any of the vulnerable programs at all, and
StackGuard has no specific knowledge of any of these at-
tacks. Thus this experiment simulates the effect of Stack-
Guard defending against unknown attacks.

In all cases we have studied, both the Canary and the
MemGuard variants of StackGuard stopped what would
have been an attack that obtains a root shell. Several
cases deserve special discussion:

umount 2.5k/libc 5.3.12: The buffer over-
flow vulnerability is actually in libc, and not
in umount. Simply re-compiling umount with
either variant of StackGuard does not suffice to stop
the attack. However, when libc is also compiled

using StackGuard (either variant) then the attack is
defeated. Thus for full protection, either the system
shared libraries must be protected with StackGuard,
or the privileged programs must be statically linked
with libraries that are protected with StackGuard.

SuperProbe: This attack does not actually attack the
function return address. Rather, it over-writes a
function pointers in the program that is allocated on
the stack. The Canary variant stopped the attack by
perturbing the layout of the stack, but an adjusted at-
tack produced a root shell even with Canary pro-
tection. The MemGuard variant stopped the attack
because a return address was in the way of the buffer
overflow. Proper treatment of this kind of attack re-
quires an extension to StackGuard, as described in
Section 5.4.

Perl: Like SuperProbe, the Perl attack does not
attack the function return address. This attack over-
writes data structures in the global data area, and
thus is not properly a “stack smashing” attack. Per-
mutations in the alignment of the global data area
induced by the StackGuard’s vector of canary val-
ues prevented the attack from working, but a mod-
ified form of the attack produced a root shell de-
spite Canary protection. MemGuard had no effect
on the attack.

Samba, wwwcount: These buffer overflow vulnerabil-
ities were announced after the StackGuard com-
piler was developed, yet the StackGuard-enhanced
versions of these programs were not vulnerable to
the attacks. This illustrates the point that Stack-
Guard can effectively prevent attacks even against
unknown vulnerabilities.

We would like the list of programs studied to be larger.
Two factors limit this kind of experimentation:

Obtaining the Exploit: It is difficult to obtain the ex-
ploit code for attacking programs. Security orga-
nizations such as CERT are reluctant to release ex-
ploits, and thus most of these exploits were obtained
either from searching the web, or from the bugtraq
mailing list [16].

Obtaining Vulnerable Source Code: Buffer overflow
attacks exploit specific, simple vulnerabilities in
popular software. Because of the severe security



Vulnerable Result Without Result With Result With
Program StackGuard Canary StackGuard MemGuard StackGuard

dip 3.3.7n root shell program halts program halts
elm 2.4 PL25 root shell program halts program halts
Perl 5.003 root shell program halts irregularly root shell
Samba root shell program halts program halts
SuperProbe root shell program halts irregularly program halts
umount 2.5k/libc 5.3.12 root shell program halts program halts
wwwcount v2.3 httpd shell program halts program halts
zgv 2.7 root shell program halts program halts

Table 1: Protecting Vulnerable Programs with StackGuard

risks posed, and the ease of patching the individ-
ual vulnerability, new releases appear soon after
the vulnerability is publicized. Moreover, the
vulnerability is often not publicized until it can
be announced with a patch in hand. The older
vulnerable source code is often not easily available.
We have begun archiving source code versions,
so that we will be able to add experiments as new
vulnerabilities appear.

4.2 StackGuard Overhead

This section describes experiments to study the per-
formance overhead imposed by StackGuard. Note that
StackGuard need only be used on programs that areSUID
root, and such programs are not usually consumers
of large amounts of CPU time. Thus it is only neces-
sary that the overhead be sufficiently low that the priv-
ileged administrative daemons do not impose a notice-
able compute load. The MemGuard and Canary variants
of StackGuard impose different kinds of overhead, and
so we microbenchmark them separately in Sections 4.2.1
and 4.2.2. Section 4.2.3 presents macrobenchmark per-
formance data.

4.2.1 Canary StackGuard Overhead

The Canary mechanism imposes additional cost at two
points in program execution:

� function prologue: there is a small cost in pushing
the canary word onto the stack.

� function epilogue: there is a moderate cost in check-
ing that the canary word is intact before performing
the function return.

We model this cost as a % overhead per function call.
The % overhead is a function of the base cost of a func-
tion call, which varies depending on the number of argu-
ments and the return type, so we studied a range of func-
tion types.

The experiments seek to discover the % overhead of
a function call imposed by StackGuard. We did this by
writing a C program that increments a statically allocated
integer 500,000,000 times. The base case is just “i++”,
and the experiments use various functions to increment
the counter. The results are shown in Table 2. All ex-
periments were performed on a 200 MHz Pentium-S with
512K of level 2 cache, and 128M of main memory.

The “i++” is the base case, and thus has no % over-
head. The “void inc()” entry is a function that does
i++ where i is a global variable; this shows the over-
head of a zero-argument void function, and is the worst-
possible case, showing a 125% overhead on function
calls. The “void inc(int *)” entry is a function
that takes anint * argument and increments it as a side-
effect; this shows that there is 69% overhead on a one-
argument void function. The “int inc(int)” en-
try is an applicative function that takes an int argument,
and returns that value + 1; this shows that the overhead of
a one-argument function returning an int is 80%.



Increment Standard Canary %
Method Run-Time Run-Time Overhead

i++ 15.1 15.1 NA
void inc() 35.1 60.2 125%
void inc(int *) 47.7 70.2 69%
int inc(int) 40.1 60.2 80%

Table 2: Microbenchmark: Canary Function Call Overhead

Numerous other experiments are possible, but they all
increase the base cost of function calls, while the cost
of the Canary mechanism remains fixed at 7 instructions
(see Figures 3 and 4), decreasing the Canary % overhead.
Thus these overhead microbenchmarks can be considered
an upper-bound on the cost of the Canary compiler.

4.2.2 MemGuard StackGuard Overhead

The MemGuard variant of StackGuard suffers substan-
tial performance penalties compared to the Canary vari-
ant, for reasons described in Section 3.2. Section 4.1
showed that the MemGuard variant provides better secu-
rity protection for stack attacks than the Canary variant
(specifically, MemGuard stopped the SuperProbe at-
tack, and guessing canary values will not help get past
MemGuard). This section measures the cost of that added
protection.

The MemGuard variant of StackGuard is still under de-
velopment, but as of this writing, we have some prelimi-
nary results. We have measured the performance of two
versions of MemGuard StackGuard:

MemGuard Register This version uses only the Pen-
tium’s debugging registers for protection, so only
the four most recent function calls’ return addresses
are protected. This version pays no penalty for page
protection faults induced by protecting the stack
with virtual memory protection. NOTE: this ver-
sion stopped all of the stack smashing attacks that
we tested

�
.

MemGuard VM This version uses the virtual memory
page protection scheme described in Section 3.2. It

�
Except Perl, which is not really a stack smashing attack.

has not fully exploited the optimization of using the
debugging registers as a cache, to keep the top page
of the stack writable. Thus this version suffers sub-
stantialperformance penalties due to a large number
of page protection faults.

Table 3 shows the overhead costs for the MemGuard
variant of StackGuard. Because of the use of a heavy-
weight system call to access privileged hardware for pro-
tection, function calls slow down by

�����
for the Mem-

Guard Register protection. The additional penalty of
page protection fault handling for false sharing of the
page on the top of the stack raises the cost of function
calls by �	� ��� . Proper use of the debugging registers as
a cache for the VM mechanism should bring the costs in
line with the MemGuard Register costs.

4.2.3 StackGuard Macrobenchmarks

Sections 4.2.1 and 4.2.2 present microbenchmark re-
sults on the additional cost of function calls in pro-
grams protected by StackGuard. However, these mea-
surements are upper bounds on the real costs of running
programs under StackGuard; the true penalty of running
StackGuard-enhanced programs is the overall cost, not
the microbenchmark cost. We have benchmarked two
programs: ctags, and the StackGuard-enhanced gcc
compiler itself.

The ctags program constructs an index of C source
code. It is 3000 lines of C source code, comprising 68
separate functions. When run over a small set of source
files (78 files, 37,000 lines of code) with a hot buffer
cache, ctags is completely compute-bound. When run
over a large set of files (1163 files, 567,000 lines of code)
ctags it is still compute-bound, because of the large



Increment Standard MemGuard Register % MemGuard VM %
Method Run-Time Run-Time Overhead Run-Time Overhead

i++ 15.1 15.1 NA NA NA
void inc() 35.1 1808 8800% 34,900 174,300%
void inc(int *) 47.7 1820 5400% 40,420 123,800%
int inc(int) 40.1 1815 7000% 41,610 166,200%

Table 3: Microbenchmark: MemGuard Function Call Overhead

amount of RAM in our test machine.

On a smaller machine, the test becomes I/O bound,
consuming 50% of the CPU’s time, so it is approximately
balanced. While the Canary variant still consumes more
CPU time than the generic program, it is overlapped with
disk I/O, and the program completes in the same amount
of real time. The MemGuard variants consume so much
CPU time that the program’s real time is dramatically im-
pacted.

Table 4 shows ctag’s run-time in these two cases.
The Canary variant’s performance penalties are moder-
ate, at 80% for the small case, and 42% for the large
case. The MemGuard Register penalties are substantial,
at 1100% for the small case, and 1000% for the large
case. The MemGuard VM performance penalties are pro-
hibitive, at 46,000% for the small case, and 36,000% for
the large case.

Table 5 shows a similar experiment for the run-time
of a StackGuard-protected gcc compiler. We thus use a
StackGuard-protected gcc to measure the performance
cost of StackGuard for a large and complex program.
To be clear, the experiment measures the cost of run-
ninggcc protected by StackGuard, and only incidentally
measures the cost of adding StackGuard protection to the
compiled program.

Table 5 shows the time to compile ctags using gcc
enhanced with StackGuard. Because there is more com-
putation per function call for gcc than ctags, this time
the costs are lower. The Canary version consumes only
6% more CPU time, and only 7% more real time. The
MemGuard variants benefited as well; the Register ver-
sion’s additional real time cost is 214%, and the VM ver-
sion’s additional cost is 5100%.

Recall that the StackGuard protective mechanism is
only necessary on privileged administrative programs.
Such programs present only a minor portion of the com-
pute load on a system, and so the StackGuard overhead
will have only a modest impact on the total system load.
Thus the overhead measured here could be considered
within reason for heightened security, without a signifi-
cant change in the administrative complexity of the sys-
tem. We discuss administration of StackGuard in Sec-
tion 5.

5 Discussion

This section discusses some of the abstract ideas repre-
sented in StackGuard, and their implications. Section 5.1
describes how StackGuard can help defend against fu-
ture attacks. Section 5.2 describes potential adminis-
tration and configuration techniques for systems using
StackGuard. Section 5.3 describes some possible perfor-
mance optimizations. Section 5.4 describes future en-
hancements to StackGuard.

5.1 Defending Against Future Attacks

Fundamentally, the attacks that StackGuard prevents
are not very interesting. They are serious security faults
that result from minor programming errors. Once dis-
covered, fixing each error is easy. The significant contri-
bution that StackGuard makes is not only that it patches
a broad collection of existing faults, but rather that it
patches a broad collection of future faults that have yet
to be discovered. That StackGuard defeats the attacks
against Samba and wwwcount discovered after Stack-
Guard was produced is testament to this effect.



Input Version User Time System Time Real Time

37,000 lines Generic 0.41 0.14 0.55
Canary 0.68 0.13 0.99
MemGuard Register 1.30 5.45 6.84
MemGuard VM 16.5 238.0 255.1

586,000 lines Generic 7.74 2.08 10.2
Canary 11.9 2.07 14.5
MemGuard Register 21.1 91.5 115.0
MemGuard VM 236 3482 3728

Table 4: Macrobenchmark: ctags

Version User Time System Time Real Time

Generic 1.70 0.12 1.83
Canary 1.79 0.16 1.96
MemGuard Register 2.22 3.35 5.76
MemGuard VM 8.17 87.7 96.2

Table 5: Macrobenchmark: gcc of the ctags program

Using StackGuard does not eliminate the need to fix
buffer overflow vulnerabilities, but by converting root
vulnerabilities into mild degradation-of-service attacks,
it does eliminate the urgency to fix them. This gives soft-
ware developers the breathing room to fix buffer over-
flows when it is convenient (i.e. when the next release is
ready) rather than having to rush to create and distribute a
patch. More importantly, StackGuard eases security ad-
ministration by relieving the system administrators of the
need to apply these patches as soon as they are released,
often several times a month.

5.2 Administration and Configuration

The adaptive response described in Section 3.3 re-
quires management: StackGuard causes programs to give
notice that they need to be replaced because they have
been (unsuccessfully) attacked, but does not make policy
about what version, if any, to replace it with.

Different policy decisions will have different impli-
cations; switching to a higher level of protection will
drastically reduce performance, yet failure to switch can
lead to successful penetration via guessing. The deci-

sion to revert to the more performant, less secure mode
is even more difficult, because the attacker may try to
induce such a switch. Making the right choice, auto-
matically, is challenging. We propose to create a small,
domain-specific language [19] for specifying these pol-
icy choices.

StackGuard comes with a performance price, and can
be viewed as an insurance policy. If one is very sure that
a program is correct, i.e. contains no buffer overflow
vulnerabilities because it has been verified using formal
methods, or a validation tool [9], then the program can be
re-compiled and installed without benefit of StackGuard.

StackGuard offers powerful protection of any program
compiled with the StackGuard compiler, but does nothing
for programs that have not been thus compiled. However,
tools such as COPS [7], which search for programs that
should not be SUID root, can be configured to look for
programs that are SUID root, and have not been com-
piled using StackGuard or some other security verifica-
tion tool [9]. If COPS reports that all SUID root pro-
grams on a machine have been protected, then one can
have some degree of assurance that the machine is not
vulnerable to buffer overflow attacks.



5.3 Performance Optimizations

Section 4.2.2 mentions that a light-weight trap to ker-
nel mode can reduce the overhead of the MemGuard
mechanism. However, it is also possible for the compiler
to optimize StackGuard performance, both for the Mem-
Guard and Canary variants.

If it is the case that no statement takes the address of
any stack variable in the functionfoo, thenfoo does not
need StackGuard protection. This is because any buffer
overflow must attack an array, which is always a pointer.
If an attack seeks to alter a variable in a function above
foo on the stack, then it must come from below foo.
But to get to the variable above foo it would have to
go through the StackGuard protection that necessarily ex-
ists on the function belowfoo because of the array being
overflowed.

The information regarding whether any variable has
been aliased is already available in gcc, so it should be a
simple matter to turn StackGuard protection off for func-
tions that do not need it. We are workingon this optimiza-
tion, and expect to have it available in a future release of
StackGuard.

5.4 Future Work

StackGuard defends against stack smashing buffer
overflow attacks that over-write the return address and in-
ject attack code. While this is the most common form of
buffer overflow attack, it is not the only form, as illus-
trated by SuperProbe in Section 4.1.

In the general case, buffer overflow attacks can write
arbitrary data to arbitrary pieces of process state, with ar-
bitrary results limited only by the opportunities offered
by buggy programs. However, some data structures are
far easier to exploit than others. Notably, function point-
ers are highly susceptible to buffer overflow attack. An
attacker could conceivably use a buffer overflow to over-
write a function pointer that is on the heap, pointing it to
attack code injected into some other buffer on the heap.
The attack code need not even overflow its buffer.

We propose to treat this problem by extending Stack-
Guard to protect other data sensitive structures in addi-

tion to function return addresses. “Sensitive data struc-
tures” would include function pointers, as well as other
structures as indicated by the programmer, or clues in the
source code itself.

This extension highlights a property of StackGuard,
which is that it is “destination oriented.” Rather than
trying to prevent buffer overflow attacks at the source,
StackGuard strives to defend that which the attacker
wants to alter. Following the notion that a TCB should
be small to be verifiable (and thus secure) we conjecture
that the set of data structures needing defending is smaller
than the set of data structures exposed to attackers. Thus
it should be easier to defend critical data structures than
to find all poorly defended interfaces.

6 Related Work

There have been several other efforts pertinent to the
problem of buffer overflow attacks. Some are explicitly
directed at the security problem, while others are more
generally concerned with software correctness. This sec-
tion reviews some of these projects, and compares them
against StackGuard. The result is not a conclusion of
which approach is better, but rather a description of the
different trade-offs that each approach provides.

6.1 Non-Executable Stack

“Solar Designer” has developed a Linux patch that
makes the stack non-executable [6], precisely to address
the stack smashing problem. This patch simply makes
the stack portion of a user process’s virtual address space
non-executable, so that attack code injected onto the
stack cannot be executed. This patch offers the advan-
tages of zero performance penalty, and that programs
work and are protected without re-compilation. How-
ever, it does necessitate running a specially-patched ker-
nel, unless this extension is adopted as standard.

This patch was non-trivial and non-obvious, for the
following reasons:

� gcc uses executable stacks for function trampolines



for nested functions.

� Linux uses executable user stacks for signal han-
dling.

� Functional programming languages, and some other
programs, rely on executable stacks for run-time
code generation.

The patch addresses the problem of trampolines and
other application use of executable stacks by detect-
ing such usage, and permanently enabling an executable
stack for that process. The patch deals with signal han-
dlers by dynamically enabling an executable stack only
for the duration of the signal handler. Both of these com-
promises offer potential opportunities for intrusion, e.g.
a buffer overflow vulnerability in a signal handler.

In addition to the above vulnerabilities, making the
stack non-executable fails to address the problem of
buffer overflow attacks that do not place attack code on
the stack. The attacker may inject the attack code into a
heap-allocated or statically allocated buffer, and simply
re-point a function return address or function pointer to
point to the attack code. This is exactly the kind of attack
brought against Perl as described in Section 4.1, and a
non-executable stack is no more effective than the current
StackGuard in stopping it.

The attacker may not even need to inject attack code
at all, if the right code fragment can be found within the
body of the program itself. Thus additional protection for
critical data structures such as function pointers and func-
tion return addresses, as described in Section 5.4.

6.2 FreeBSD Stack Integrity Check

Alexander Snarskii developed a FreeBSD patch [22]
that does similar integrity checks to those used by the
Canary variant of StackGuard. However, these integrity
checks were non-portable, hard-coded in assembler, and
embedded in libc. This method protects against stack
smashing attacks inside libc, but is not as general as
StackGuard.

6.3 Array Bounds Checking for C

Richard Jones and Paul Kelly have developed a gcc
patch [12] that does full array bounds checking for C pro-
grams. Programs compiled with this patch are compat-
ible with ordinary gcc modules, because they have not
changed the representation of pointers. Rather, they de-
rive a “base” pointer from each pointer expression, and
check the attributes of that pointer to determine whether
the expression is within bounds.

The performance costs are substantial: a pointer-
intensive program (ijk matrix multiply) experienced

�����
slowdown. Since the slowdown is proportionate to
pointer usage, which is quite common in privileged pro-
grams, this performance penalty is particularly unfortu-
nate.

However, this method is strictly more secure than
StackGuard, because it will prevent all buffer overflow
attacks, not just those that attempt to alter return ad-
dresses, or other data structures that are perceived to be
sensitive (see Section 5.4). Thus we propose that pro-
grams compiled with the bounds-checking compiler be
treated as the “backing store” for MemGuard-protected
programs, just as MemGuard-protected programs are the
back-up plan for Canary-protected programs (see Sec-
tion 3.3).

6.4 Memory Access Checking

Purify [10] is a debugging tool for C programs with
memory access errors. Purify uses “object code inser-
tion” to instrument all memory accesses. The approach
is similar to StackGuard, in that it does integrity checking
of memory, but it does so on each memory access, rather
than on each function return. As a result, Purify is both
more general and more expensive than StackGuard, im-
posing a slowdown of 2 to 5 times the execution time of
optimized code, making Purify more suitable for debug-
ging software. StackGuard, in contrast, is intended to be
left on for production use of the compiled code.



6.5 Type-Safe Languages

All of the vulnerabilities described here result from the
lack of type safety in C. If the only operations that can be
performed on a variable are those described by the type,
then it is not possible to use creative input applied to vari-
able foo to make arbitrary changes to the variable bar.

Type-safety is one of the foundations of the Java secu-
rity model. Unfortunately, errors in the Java type check-
ing system are one of the ways that Java programs and
Java virtual machines can be attacked [5, 20]. If the cor-
rectness of the type checking system is in question, then
programs depending on that type checking system for se-
curity benefit from these techniques in similar ways to
the benefit provided to type-unsafe programs. Applying
StackGuard techniques to Java programs and Java virtual
machines may yield beneficial results.

7 Conclusions

We have presented StackGuard, a systematic compiler
tool that prevents a broad class of buffer overflow secu-
rity attacks from succeeding. We presented both security
and performance analysis of the tool. Because the tool is
oblivious to the specific attack and vulnerabilitybeing ex-
ploited, it is expected that this toolwill also be able to stop
buffer overflow attacks that have yet to be discovered, re-
ducing the need for constant, rapid patching of software
to stay secure.

In its most basic form, the tool requires only re-
compilation to make a program largely secure against
buffer overflow attacks. In more elaborate forms, it pro-
vides an adaptive response to buffer overflow attacks, al-
lowing systems to be configured to trade performance for
survivability. We concluded with discussion on how to
generalize these techniques to other areas of security vul-
nerability.

8 Availability

StackGuard is a small set of patches to gcc.
We are releasing StackGuard under the Gnu Pub-
lic License, while retaining copyright to OGI.
StackGuard is available both as a patch to gcc
2.7.2.2, and as a complete tar file, at this location:
http://www/cse.ogi.edu/DISC/projects/
immunix/StackGuard/.

References

[1] Crispin Cowan, Tito Autrey, Charles Krasic, Cal-
ton Pu, and Jonathan Walpole. Fast Concurrent Dy-
namic Linking for an Adaptive Operating System.
In International Conference on Configurable Dis-
tributed Systems (ICCDS’96), Annapolis, MD, May
1996.

[2] Crispin Cowan, Andrew Black, Charles Krasic,
Calton Pu, Jonathan Walpole, Charles Consel,
and Eugen-Nicolae Volanschi. Specialization
Classes: An Object Framework for Specialization.
In Proceedings of the Fifth International Work-
shop on Object-Orientation in Operating Systems
(IWOOOS ’96), Seattle, WA, October 27-28 1996.

[3] Crispin Cowan, Dylan McNamee, Andrew Black,
Calton Pu, Jonathan Walpole, Charles Krasic, Re-
naud Marlet, and Qian Zhang. A Toolkit for Spe-
cializing Production Operating System Code. Tech-
nical Report CSE-97-004, Dept. of Computer Sci-
ence and Engineering, Oregon Graduate Institute,
March 1997.

[4] Michele Crabb. Curmudgeon’s Executive Sum-
mary. In Michele Crabb, editor, The SANS Network
Security Digest. SANS, 1997. ContributingEditors:
Matt Bishop, Gene Spafford, Steve Bellovin, Gene
Schultz, Rob Kolstad, Marcus Ranum, Dorothy
Denning, Dan Geer, Peter Neumann, Peter Galvin,
David Harley, Jean Chouanard.

[5] Drew Dean, Edward W. Felten, and Dan S. Wal-
lach. Java Security: From HotJava to Netscape and
Beyond. In Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA, 1996.



http://www.cs.princeton.edu/sip/
pub/secure96.html.

[6] “Solar Designer”. Non-Executable User Stack.
http://www.false.com/security/
linux-stack/.

[7] D. Farmer. The COPS Security Checker
System. In Summer 1990 USENIX Confer-
ence, page 165, Anaheim, CA, June 1990.
http://www.trouble.org/cops/.

[8] Stephanie Forrest, Anil Somayaji, and David. H.
Ackley. Building Diverse Computer Systems . In
HotOS-VI, May 1997.

[9] Virgil Gligor, Serban Gavrila, and Sabari Gupta.
Penetration Analysis Tools. Personal Communica-
tions, July 1997.

[10] Reed Hastings and Bob Joyce. Purify: Fast Detec-
tion of Memory Leaks and Access Errors. In Pro-
ceedings of the Winter USENIX Conference, 1992.
http://www.rational.com/support/
techpapers/fast detection/.

[11] Immunix. Adaptive System Survivabil-
ity. http://www.cse.ogi.edu/DISC/
projects/immunix, 1997.

[12] Richard Jones and Paul Kelly.
Bounds Checking for C.
http://www-ala.doc.ic.ac.uk/˜phjk/
BoundsChecking.html, July 1995.

[13] Barton P. Miller, David Koski, Cjin Pheow Lee,
Vivekananda Maganty, Ravi Murthy, Ajitkumar
Natarajan, and Jeff Steidl. Fuzz Revisited: A re-
examination of the Reliabilityof UNIX Utilities and
Services. Report, University of Wisconsin, 1995.

[14] B.P. Miller, L. Fredrikson, and B. So. An Empiri-
cal Study of the Reliability of UNIX Utilities. Com-
munications of the ACM, 33(12):33–44, December
1990.

[15] “Mudge”. How to Write Buffer Overflows.
http://l0pht.com/advisories/
bufero.html, 1997.

[16] “Aleph One”. Bugtraq Mailing List.
http://geek-girl.com/bugtraq/.

[17] “Aleph One”. Smashing The Stack For Fun And
Profit. Phrack, 7(49), November 1996.

[18] Calton Pu, Tito Autrey, Andrew Black, Charles
Consel, Crispin Cowan, Jon Inouye, Lakshmi
Kethana, Jonathan Walpole, and Ke Zhang. Op-
timistic Incremental Specialization: Streamlining
a Commercial Operating System. In Symposium
on Operating Systems Principles (SOSP), Copper
Mountain, Colorado, December 1995.

[19] Calton Pu, Andrew Black, CrispinCowan, Jonathan
Walpole, and Charles Consel. Microlanguages for
Operating System Specialization. In SIGPLAN
Workshop on Domain-Specific Languages, Paris,
France, January 1997.

[20] Jim Roskind. Panel: Security of Downloadable Ex-
ecutable Content. NDSS (Network and Distributed
System Security), February 1997.

[21] Nathan P. Smith. Stack Smashing vul-
nerabilities in the UNIX Operating Sys-
tem. http://millcomm.com/˜nate/
machines/security/stack-smashing/
nate-buffer.ps, 1997.

[22] Alexander Snarskii. FreeBSD Stack Integrity
Patch. ftp://ftp.lucky.net/pub/unix/
local/libc-letter, 1997.

[23] E. Spafford. The Internet Worm Program: Analysis.
Computer Communication Review, January 1989.

[24] Eugen N. Volanschi, Charles Consel, Gilles Muller,
and Crispin Cowan. Declarative Specialization of
Object-Oriented Programs. In Proceedings of the
Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’97),
Atlanta, GA, October 1997.


