
1 Introduction

Traceroute is one of the key tools used for network troubleshooting and scouting. It has been
available since networking's early days. Because traceroute is based on TTL header modification, it
crafts its own network packets. The goal of this assignment is to re-implement a traceroute with
cutting edge techniques designed to improve its scouting capabilities and bypass SPI firewalls. In this
assignment you will learn about packet injection and sniffing. The assignment also teaches about
more subtle topics such as network latency, packet filtering, and Q.O.S.

1.1 Instructions

This project has to be completed sequentially as each part depends on the previous ones. The
required coding language is C. You should consider using libnet [1] and libpcap [2], however using
raw sockets is permitted as well.
Note that the exercises become progressively more difficult, with Exercise 5 likely to consume the
greatest amount of effort.

1.2 Submission and Grading

To compile your project, the script will use the command make, executed in the project directory.
Then it will launch our tests, using an executable name "traceng" you have to make sure your make
file results in this executable name, in the same project directory.
Make sure that the command line options and the output format are correctly implemented as they will
be used by our script during the grading process. Specific examples of how we are going to test your
executable are provided later in this document, for each exercise.
Your project directory should also contain a file called README which is text file describing the
highlights of your solution to each exercise anything special that you did, information required in the
specific exercise, what is the most interesting thing you learned in the exercise, and anything else we
need to take into account. Plan on a couple of paragraphs per exercise (excluding exercise-specific
info).
Along with README, include a log file called LOG, that contains the output of your implementation for
all the functionality you have implemented. Tests will involve tracing from IIT to www.apple.com,
www.google.de, www.amazon.co.uk. Every feature you implemented will be tested against these
hosts. This will be helpful as we grade your work in case the network is volatile, or due to differences
in your environment and ours. Note that the output from each exercise starts with a dump of the
arguments used-this is so a log containing many runs will still be readable.
Your .tgz submission should not exceed 2MB.

1.3 Exercise Overview

There are five exercises in the project:

 Exercise 1-Standard Traceroute: covered in Section 2.

 Exercise 2-Versatile Traceroute: The goal is to implement various types of probes so your
tool is able to switch when a router does not respond to the current type of probe or when
packets are lost (Section 3).

 Exercise 3-Statistics Reporting: The statistics are similar in spirit to those reported by mtr [4]
(Section 4).

 Exercise 4-Path Diagnostics: The goal is to be able to analyze network problems and load-
balancing routing (Section 5).

 Exercise 5-Advanced Techniques: Finally you will implement a set of techniques designed to
handle packet filtering devices such as firewalls (Section 6). These techniques are inspired by
Firewalk [3] as well as the established traceroute technique introduced by Michal Zalewski.

2 Standard Traceroute

The goal of this first part is to make you familiar with the notion of packet injection and packet sniffing.
Accordingly you will have to code a traceroute that sends ICMP packets and outputs the results.

http://www.google.de/

 Look at libnet [1], libpcap [2] and raw socket APIs to understand the differences.

 Send a simple ICMP echo packet on the network. The destination IP is passed as a
command line argument -d. You should test that the packet is correctly sent and answered by
using tcpdump [2].

 Implement the sniffing process in your code. Use two threads: one for sending packets, one
for reading the responses from the network. Implement a TTL increment loop, with TTL
starting at 1. Increment TTL until a response from the targeted host is received.

 By default your program uses the first network interface. However add the ability to select
another one using the command switch -i, e.g. as “-i eth0".

 Add a file output option -f (always append to the file, do not clear its contents).

2.1 Sample Invocations

 ./traceng -f log.txt -d <targetHostName>

 ./traceng -d <targetHostName> -i <ifSrc>

2.2 Sample Output

<arguments f="log.txt" d="72.32.146.3" i="eth1">

</arguments>

<traceroute>

<host distance="1"

ip="192.168.1.1"

probeType="ICMP">

</host>

<host distance="2"

ip="72.32.146.3"

probeType="ICMP">

</host>

</traceroute>

3 Versatile Traceroute

The goal of this part is to add probe exibility to accommodate router and firewall policy.

 Add the ability to send TCP -T probes with various ports at the source and destination -sp and
-dp.

 Add the ability to send UDP -U probes with various ports at the source and destination -sp
and -dp.

 Add the ability to send ICMP -I probes with various ICMP codes -c.(Note that the
implementation for Exercise 1 should be equivalent to using “-I -c 8".

3.1 Sample Invocations

 ./traceng -d <targetHostName> -sp <portSrc> -dp <portDest> -T

 ./traceng -U -sp <portSrc> -i <ifSrc> -d <targetHostName> -dp <portDest>

 ./traceng -I -d <targetHostName> -c <code>

3.2 Sample Output

<arguments ...>

</arguments>

<traceroute>

<host distance="1"

ip="192.168.1.1"

probeType="TCP/UDP/ICMP"

port="42">

</host>

<host distance="2"

ip="72.32.146.3"

probeType="TCP/UDP/ICMP"

port="42">

</host>

</traceroute>

4 Statistics Reporting

The goal of this section is to extend traceng to be a tool for gathering statistics. This is similar in spirit
to mtr [4]. Once the path to the target host is determined the tool starts to "ping" each router that
belongs to the path, and to gather statistics. This section's objectives are:

 Modify the probe engine to ping each router on a regular basis.

 Display probe results on the standard output.

 Add latency evolution information.

 Enable statistics reporting when the -S option is provided (otherwise, the behavior is as
before). The option takes as an argument the number of iterations you have to run.

4.1 Sample Invocations

 ./traceng -S 10 -f t.log -T -d <targetHostName> -sp <portSrc> -dp <portDest>

 ./traceng -d <targetHostName> -sp <portSrc> -dp <portDest> -S 10 –U

 ./traceng -d <targetHostName> -I -c <code> -S 2 -f my_stats.log

4.2 Sample Output

<arguments ...>

</arguments>

<traceroute>

<host distance="1"

ip="192.168.1.1"

probeType="TCP/UDP/ICMP"

port="42"

pktSent="1"

pktLost="0"

minTime="2.300"

maxTime="2.300"

avgTime="2.300"

iteration="1">

</host>

<host distance="2"

ip="72.32.146.3"

probeType="TCP/UDP/ICMP"

port="42"

pktSent="1"

pktLost="0"

minTime="7.120"

maxTime="7.120"

avgTime="7.120"

iteration="1">

</host>

...

</traceoute>

<traceroute>

<host distance="1"

ip="192.168.1.1"

probeType="TCP/UDP/ICMP"

port="42"

pktSent="10"

pktLost="0"

minTime="1.101"

maxTime="5.200"

avgTime="1.327"

iteration="10">

</host>

<host distance="2"

ip="72.32.146.3"

probeType="TCP/UDP/ICMP"

port="42"

pktSent="10"

pktLost="1"

minTime="5.051"

maxTime="10.311"

avgTime="8.732"

iteration="10">

</host>

.....

</traceroute>

Add one line per host per probe type per ping cycle. Note that the “per host" and “per probe type"
requirements will become relevant in the next exercises. So far, you have only dealt with a single
host, and a single probe type per invocation of traceng.

5 Path Diagnostics

Here are the three questions that your tool needs to address:

 Packet loss: is the loss due to a rate limit on the router, or congestion?

 Route load balancing: is there a load balancer between you and the targeted host?

 Does your targeted host use multiple servers? How does the load balancing work?
All of this functionality is controlled by the -G option. If it is missing, the behavior of traceng is
unchanged.

5.1 Loss

To analyze the cause for packet loss you will implement an algorithm that performs the following tests
and analyzes their results when loss is detected on a router.

 Try to change the delay between probes for this particular router.

 Try to change the probe protocol.

 Try to change the packet TOS.

 Try to probe the router and its successor in a short interval to see if both show loss.

 Do this also for the router and its predecessor.

 Try multiple protocols.
Add the resulting interpretation to the output of the tool. The format for the output is:

<diag type="loss">your interpretation</diag>

In the README file, explain your interpretation codes in detail. You are free to add other tests if they
are needed.

5.2 Route Load Balancing

To detect route load balancing you will implement an algorithm that performs the following tests and
analyzes their results. The goal is to discover whether the route is load balanced and how the load
balancing is done.

 Run the path discovery with multiples protocols

 Run the path discovery with multiples ports source and destination.

 If the route is load balanced try to determine if the load balancing is done

o by protocol
o port destination
o packets: this can be done by observing the packet repartition
o the tuple port source / port destination
o other?

Add the result interpretation to the output of the tool. The format for the file is

<diag type="routelb">your interpretation</diag>

In the README file, explain your interpretation codes in detail. You are free to add other tests if they
are needed.

5.3 Server Load Balancing

Some host names may resolve to multiple servers. One such example is www.google.com. In case of
multiple servers per host name, your tool needs to trace the route to all servers, and gather (and
report) statistics for each. Recall that in Section 4 you were required to output one line per host. In
case of multiples servers for the same host, you have to treat each server as its own host, and
provide separate lines for each IP and at each iteration ping them separately to compute their latency.
HINT: Look at the command host if you want to understand how to find out all server IPs for a host
name.

5.4 Sample Invocations

 ./traceng -f t.log -G -T www.google.com -sp <portSrc> -dp <portDest>

5.5 Sample Output

<traceroute>

<arguments ...>

</arguments>

<host distance="1"

ip="192.168.1.1"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="2"

ip="72.3.12.198"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="3"

ip="164.32.9.8"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="4"

ip="164.32.9.1"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="4"

ip="164.32.9.2"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="5"

ip="74.125.19.99"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="5"

ip="74.125.19.103"

probeType="TCP/UDP/ICMP"

port="42">

http://www.google.com/

<host distance="5"

ip="74.125.19.104"

probeType="TCP/UDP/ICMP"

port="42">

<host distance="5"

ip="74.125.19.147"

probeType="TCP/UDP/ICMP"

port="42">

</host>

</traceroute>

<diag type="loss">Packets dropped by 164.32.9.8 due to congestion.</diag>

<diag type="routelb">Route load balancing detected for TCP traffic after IP

164.32.9.8 at hop 4.</diag>

6 Firewall Handling

6.1 Firewalk

Implement the Firewalking -F algorithm [3]. That enumerates firewall ACL by targeting a host -d which
is behind the firewall -g and trying to reach it with various TCP or UDP packet with a TTL one greater
than the targeted firewall. If there is a response, then the traffic is considered allowed.

6.1.1 Sample Invocation

 ./traceng -F -g <gatewayip> -d <hostbehingthegateway> -f my_stats.log

6.1.2 Sample Output

<arguments ...>

</arguments>

<firewalk>

<port num="1" proto="TCP">open</proto>

<port num="2" proto="TCP">filtered</proto>

</firewalk>

6.2 Established Method

Implement the established traceroute technique -E used to bypass stateful packet filters. This
technique works as a normal TCP traceroute, except that, before tracerouting, a TCP connection is
established with the destination host. You are not allowed to use the socket library for TCP: you have
to implement the three-way handshake using hand-crafted packets. Make sure your ISN is random.

6.2.1 Sample Invocation

 ./traceng -E -d <targetHostName> -sp <portSrc> -dp <portDest> -f my_stats.log

6.2.2 Sample Output

<arguments ...>

</arguments>

<established>

<port num="1" proto="TCP">open</proto>

<port num="2" proto="TCP">filtered</proto>

</established>

6.3 Ghost Traceroute

This part allows you to understand better the link between ARP addresses and IP addresses, and
how LANs work. Implement a ghost traceroute which allows you to traceroute from a spoofed IP. The

key is to handle ARP packets, as you need to see the responses to whatever you send, and switches
along the way need to know to send those responses to you. Make sure that the IP you spoof is not
already in use. Use the -P option to activate this functionality, along with passing the requested
source IP in the -s argument.

6.3.1 Sample Invocation

 ./traceng -P -s <sourceIP> -d <targetHostName> -sp <portSrc> -dp

<portDest> -f my_stats.log

6.3.2 Sample Output

<arguments ...>

</arguments>

<traceroute>

<host distance="1"

ip="192.168.1.1"

probeType="TCP/UDP/ICMP"

port="42">

</host>

<host distance="2"

ip="72.32.146.3"

probeType="TCP/UDP/ICMP"

port="42">

</host>

</traceroute>

NOTE: Even though this output is indistinguishable from that in Exercise 2, tcpdump will capture the
different IP that you are using, as well as your ARP traffic.

7 Wrap-Up
Note that you can assume the -S, -G, -E, -F, and -P options are mutually exclusive: we will not use
more than one of them at a time, even though there are ways to meaningfully mix these options.

References
[1] Libnet homepage: http://libnet.sourceforge.net/.
[2] Tcpdump and libpcap official homepage: http://www.tcpdump.org/.
[3] David Goldsmith and Michael Schiffman. Firewalk
http://www.packetfactory.net/firewalk/firewalk-final.pdf, 1998.
[4] Kimball Matt. Mtr: My traceroute (http://en.wikipedia.org/wiki/mtr (my traceroute)).
[5] Schiffman Mike. Building Open Source Network Security Tools: Components and Techniques.
John Wiley, Nov. 2002.
[6] W. Richard Stevens. TCP/IP Illustrated, Volume 1 : The Protocols. Addison-Wesley, 1994.

