
Protection Strategies for Direct Access to Virtualized I/O Devices

Paul Willmann, Scott Rixner, and Alan L. Cox
Rice University

{willmann, rixner, alc}@rice.edu

Abstract
Commodity virtual machine monitors forbid direct ac-
cess to I/O devices by untrusted guest operating systems
in order to provide protection and sharing. However,
both I/O memory management units (IOMMUs) and re-
cently proposed software-based methods can be used to
reduce the overhead of I/O virtualization by providing
untrusted guest operating systems with safe, direct ac-
cess to I/O devices. This paper explores the performance
and safety tradeoffs of strategies for using these mecha-
nisms.

The protection strategies presented in this paper pro-
vide equivalent inter-guest protection among operating
system instances. However, they provide varying levels
of intra-guest protection from driver software and incur
varying levels of overhead. A simple direct-map strat-
egy incurs the least overhead, providing native-level per-
formance but offering no enhanced protection from mis-
behaving device drivers within the guest operating sys-
tem. Additional protection against guest drivers can be
achieved by limiting IOMMU page-table mappings to
memory buffers that are actually used in I/O transfers.
Furthermore, the cost incurred by this limitation can be
minimized by aggressively reusing these mappings. Sur-
prisingly, a software-only strategy that does not use an
IOMMU at all performs competitively, and sometimes
better than, hardware-based strategies while maintaining
strict inter-guest isolation.

1 Introduction

In many organizations, the economics of supporting a
growing number of Internet-based application services
has created a demand for server consolidation. Conse-
quently, there has been a resurgence of interest in ma-

This work was supported in part by the National Science Foundation
under Grant Nos. CCF-0546140 and CNS-0720878 and by gifts from
Advanced Micro Devices and Hewlett-Packard. Paul Willmann was
supported in part by SFE Technology, Inc.

chine virtualization [1, 2, 5, 8, 9, 10, 14, 19, 22]. How-
ever, virtualization can impose performance penalties up
to a factor of 5 on I/O-intensive workloads [16, 19].
These penalties stem from the overhead of providing
shared and protected access to I/O devices by untrusted
guest operating systems. Commodity virtualization ar-
chitectures provide protection in software by forbidding
direct access to I/O hardware by untrusted guests—
instead, all I/O accesses, both commands and data, are
routed through a single software entity that provides both
protection and sharing.

Preferably, guest operating systems would be able to
directly access I/O devices without the need for the data
to traverse an intermediate software layer within the vir-
tual machine monitor [17, 23]. However, if a guest can
directly access an I/O device, then it can potentially di-
rect the device to access memory that it is not entitled
to via direct memory access (DMA). Therefore, the vir-
tual machine monitor must be able to ensure that guest
operating systems do not access each other’s memory
indirectly through the shared I/O devices in the system.
Both I/O memory management units (IOMMUs) [7] and
recently proposed software-based methods [23] can pro-
vide DMA memory protection for the virtual machine
monitor. They do so by preventing guest operating sys-
tems from directing I/O devices to access memory that it
is not entitled to access, while still allowing the guest to
directly access the device.

These DMA protection mechanisms can also be used
by a guest operating system to enhance safety and iso-
lation among its own drivers and processes. The state-
of-the-art single-use IOMMU-based protection strategy
employed by many existing non-virtualized operating
systems provides just such a level of enhanced safety.
This strategy creates a mapping for each I/O transaction
and then destroys that mapping as soon as the transac-
tion completes. In conjunction with IOMMU hardware,
the operating system’s protection strategy can exert fine-
grained control over what portions of memory may be

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 15



used in an I/O transaction at any given time.
This paper explores and experimentally compares five

different strategies for ensuring memory isolation of un-
trusted, virtualized operating systems that each have di-
rect access to I/O hardware. These strategies all ensure
isolation among OS instances and the virtual machine
monitor, but they vary in the level of protection within a
particular guest they can support and the overheads they
incur. Though upcoming commodity platforms will fea-
ture IOMMUs for efficient I/O virtualization, there ex-
ists no comprehensive study about how to best leverage
IOMMUs, what the tradeoffs are among efficiency and
protection for different possible strategies, and what the
comparative costs associated with the various protection
strategies are.

The first IOMMU-based strategy is based on state-of-
the-art strategies and uses single-use I/O memory map-
pings that are created before each I/O operation and im-
mediately destroyed after each I/O operation. The sec-
ond IOMMU-based strategy is introduced in this pa-
per and uses shared I/O memory mappings that can be
reused by multiple, concurrent I/O operations. The third
IOMMU-based strategy is also introduced in this paper
and uses persistent I/O memory mappings that can be
reused. The fourth IOMMU-based strategy uses a static
direct map of the guest’s physical memory to isolate
that guest’s I/O transactions. Finally, the software-based
strategy is based on previous work [23] and uses VMM-
managed DMA descriptors that can only be used for one
I/O operation.

The comparison of these five strategies yields sev-
eral insights. First, all five strategies provide equiva-
lent inter-guest protection among OS instances. How-
ever, the strategies support differing levels of protection
within a particular guest (intra-guest protection). For ex-
ample, the direct-map strategy incurs almost no perfor-
mance overhead but supports no intra-guest protection.
Conversely, the single-use strategy provides the maxi-
mum possible intra-guest protection, but it imposes the
largest performance penalty. Second, there is signifi-
cant opportunity to reuse IOMMU mappings, which can
reduce protection overheads. Multiple concurrent I/O
operations are able to share the same mappings often
enough that there is a noticeable decrease in the over-
head of providing protection. Sharing mappings only
among concurrent I/O operations provides the same level
of intra-guest protection as the single-use strategy but
with less overhead. Relaxing this intra-guest protection
guarantee by allowing mappings to persist so that they
can be reused in future I/O operations can significantly
decrease this overhead, allowing the guest to achieve
performance levels very close to that of the direct-map
strategy while still maintaining some amount of intra-
guest protection. Finally, the software-based protec-

tion strategy performs competitively with several of the
better-performing IOMMU-based strategies while main-
taining strong inter-guest protection guarantees and en-
abling intra-guest protection capabilities.

The next section provides background on how I/O de-
vices access main memory and the possible memory pro-
tection violations that can occur when doing so. Sec-
tions 3 and 4 discuss the four IOMMU-based protection
strategies and the one software-based protection strat-
egy. Section 5 then describes the protection proper-
ties afforded by the five strategies. Section 6 discusses
IOMMU hardware architectures. Section 7 describes the
experimental methodology and Section 8 evaluates the
protection strategies. Section 9 then describes related
work and Section 10 concludes the paper.

2 Background

Modern server I/O devices, including disk and network
controllers, utilize direct memory access (DMA) to move
data between the host’s main memory and the device’s
on-board buffers. The device uses DMA to access mem-
ory independently of the host CPU, so such accesses
must be controlled and protected. To initiate a DMA
operation, the device driver within the operating system
creates DMA descriptors that refer to regions of mem-
ory. Each DMA descriptor typically includes an address,
a length, and a few device-specific flags. In commodity
x86 systems, devices lack support for virtual-to-physical
address translation, so DMA descriptors always contain
physical addresses for main memory. Once created, the
device driver passes the descriptors to the device, which
will later use the descriptors to transfer data to or from
the indicated memory regions autonomously. When the
requested I/O operations have been completed, the de-
vice raises an interrupt to notify the device driver.

For example, to transmit a network packet, the net-
work interface’s device driver might create two DMA de-
scriptors. The first descriptor might point to the packet
headers and the second descriptor might point to the
packet payload. Once created, the device driver would
then notify the network interface that there are new DMA
descriptors available. The precise mechanism of that no-
tification depends on the particular network interface,
but typically involves a programmed I/O operation to
the device telling it the location of the new descriptors.
The network interface would then retrieve the descriptors
from main memory using DMA—if they were not writ-
ten to the device directly by programmed I/O. The net-
work interface would then retrieve the two memory re-
gions that compose the network packet and transmit them
over the network. Finally, the network interface would
interrupt the host to indicate that the packet has been
transmitted. In practice, notifications from the device

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association16



driver and interrupts from the network interface would
likely be aggregated to cover multiple packets for effi-
ciency.

Three potential memory access violations can occur
on every I/O transfer initiated using this DMA architec-
ture:

1. The device driver could create a DMA descriptor
with an incorrect address (a “bad-address” fault).

2. The operating system could repurpose the mem-
ory referenced by a DMA descriptor, or the de-
vice driver could later reuse a valid DMA descriptor
without permission (an “invalid-use” fault).

3. The device itself could initiate a DMA transfer to
a memory address not referenced by the DMA de-
scriptor (a “bad-device” fault).

These violations could occur either because of failures or
because of malicious intent. However, as devices are typ-
ically not user-programmable, the last type of violation is
only likely to occur as a result of a device failure.

In a non-virtualized environment running on commod-
ity x86 hardware, the operating system is solely respon-
sible for preventing “bad-address” and “invalid-use” vi-
olations. This requires the operating system to trust the
device driver to create correct DMA descriptors using
only physical memory addresses of buffers that have
been pinned by the OS. In practical terms, however,
trusting the driver can be disastrous in terms of sys-
tem stability. For example, nearly 85% of all system
crashes of the Windows XP operating system are caused
by drivers [20]. As will be discussed, operating systems
running on platforms that feature IOMMUs can leverage
those hardware capabilities to isolate device drivers and
explicitly authorize the I/O transactions requested by the
driver, thus reducing the trust requirement for the driver.
Regardless, a failure of the operating system to prevent
these memory access violations could potentially result
in system failure.

In a virtualized environment, however, the virtual ma-
chine monitor cannot trust the guest operating systems to
prevent these memory access violations, as a memory ac-
cess violation incurred by one guest operating system can
potentially harm other guest operating systems or even
bring down the whole system. Therefore, a virtual ma-
chine monitor requires mechanisms to prevent one guest
operating system from intentionally or accidentally di-
recting an I/O device to access the memory of another
guest operating system. The only way that would be pos-
sible is via either a “bad-address” or “invalid-use” viola-
tion. Depending on the reliability of the I/O devices, it
may also be desirable to try to prevent “bad-device” vi-
olations as well (although it is frequently not possible

to protect against a misbehaving device, as will be dis-
cussed in Section 5). The following sections describe
mechanisms and strategies for preventing these memory
access violations.

3 IOMMU-based Protection

A VMM can utilize an IOMMU to help provide DMA
memory protection when allowing direct access to I/O
devices. Whereas a virtual memory management unit
enforces access control and provides address transla-
tion services for a processor as it accesses memory, an
IOMMU enforces access control and provides address
translation services for an I/O device as it accesses mem-
ory.

In general, the structures defined by IOMMUs for ex-
pressing access control and address translation are fairly
similar to those defined by virtual memory management
units. Typically, the VMM or OS maintains one or more
page table structures for use by the IOMMU. There are,
however, some differences. The VMM or OS must also
maintain another structure for the IOMMU that maps
each I/O device to one of the page tables. Although ev-
ery device must have an entry in this mapping, not every
device must have its own page table. If two or more de-
vices are entitled to access the same memory, then they
can share a single page table. On every memory access
by an I/O device the IOMMU consults the I/O device’s
designated page table to determine if the access should
be allowed or blocked.

Regardless of the page-table organization, all
IOMMU-based systems require that a valid IOMMU
mapping exists for each host memory buffer to be
used in an upcoming DMA descriptor. Otherwise, the
DMA descriptor will refer to a region unmapped by
the IOMMU, and the I/O transaction will fail. The
following subsections present four strategies for using
an IOMMU to provide DMA memory protection in a
VMM. The strategies primarily differ in the extent to
which IOMMU mappings are allowed to be reused. The
underlying IOMMU hardware architectures that may be
used to implement these strategies are discussed in more
detail in Section 6

3.1 Single-use Mappings

A common strategy for managing an IOMMU is to create
a single-use mapping for each I/O transaction. The Linux
DMA-Mapping interface, for example, implements a
single-use mapping strategy. Ben-Yehuda, et al. also
explored a single-use mapping strategy in the context of
virtual machine monitors [7]. In such a single-use strat-
egy, the driver must ensure that a new IOMMU mapping

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 17



is created for each DMA descriptor. Even, when sepa-
rate DMA descriptors refer to the same physical page,
the single-use strategy always creates distinct IOMMU
mappings for each descriptor. Each IOMMU mapping
is destroyed once the corresponding I/O transaction has
completed. In a virtualized system, the trusted virtual
machine monitor is responsible for creating and destroy-
ing IOMMU mappings at the driver’s request. If the
VMM does not create the mapping, either because the
driver did not request it or because the request referred
to memory not owned by the guest, then the device will
be unable to perform the corresponding DMA operation.

To carry out an I/O transaction using a single-use map-
ping strategy, the virtual machine monitor (VMM), un-
trusted guest operating system (GOS), and the device
(DEV) carry out the following steps:

1. GOS: The guest OS requests an IOMMU mapping
for the memory buffer involved in the I/O transac-
tion.

2. VMM: The VMM validates that the requesting
guest OS has appropriate read or write permission
for each memory page in the buffer to be mapped.

3. VMM: The VMM marks the memory buffer as “in
I/O use”, which prevents the buffer from being real-
located to another guest OS during an I/O transac-
tion.

4. VMM: The VMM creates one or more IOMMU
mappings for the buffer. As with virtual memory
management units, one mapping is usually required
for each memory page in the buffer.

5. GOS: The guest OS creates a DMA descriptor with
the IOMMU-mapped address that was returned by
the VMM.

6. DEV: The device carries out its I/O transaction as
directed by the DMA descriptor and it notifies the
driver upon completion.

7. GOS: The driver requests destruction of the corre-
sponding IOMMU mapping(s).

8. VMM: The VMM validates that the mappings be-
long to the guest OS making the request.

9. VMM: The VMM destroys the IOMMU mappings.

10. VMM: The VMM clears the “in I/O use” marker
associated with each memory page referred to by
the recently-destroyed mapping(s).

3.2 Shared Mappings

Rather than creating a new IOMMU mapping for each
new DMA descriptor, it is possible to share a mapping
among DMA descriptors so long as the mapping points
to the same underlying memory page and remains valid.
Unlike the single-use strategy, the shared-mapping strat-
egy detects when a valid IOMMU mapping to a mem-
ory page already exists and reuses that mapping rather
than generating a new one. Sharing IOMMU mappings
is advantageous because it avoids the overhead of creat-
ing and destroying a new mapping for each I/O request.
In practical terms, this sharing can happen when an ap-
plication repeats the same I/O message or when an appli-
cation sends or receives small I/O messages that reside in
the same memory page.

To implement sharing, the guest operating system
must keep track of which IOMMU mappings are cur-
rently valid, and it must keep track of how many pending
I/O requests are currently using the mapping. To pro-
tect a guest’s memory from errant device accesses, an
IOMMU mapping should be destroyed once all outstand-
ing I/O requests that use the mapping have been com-
pleted. Though the untrusted guest operating system has
responsibilities for carrying out a shared-mapping strat-
egy, it need not function correctly to ensure isolation
among operating systems, as is discussed further in Sec-
tion 5.

To carry out a shared-mapping strategy, the guest OS
and the VMM perform many of the same steps that are
required by the single-use strategy. The shared-mapping
strategy differs at the initiation and termination of an I/O
transaction. Before step 1 would occur in a single-use
strategy, the guest operating system first queries a ta-
ble of known, valid IOMMU mappings to see if a map-
ping for the I/O memory buffer already exists. If so, the
driver uses the previously established IOMMU-mapped
address for a DMA descriptor, and then passes the de-
scriptor to the device, in effect skipping steps 1–4. If
not, the guest and VMM follow steps 1–4 to create a
new mapping. Whether a new mapping is created or
not, before step 5, the guest operating system increments
its own reference count for the mapping. This reference
count is separate from the reference count maintained by
the VMM.

Steps 5 and 6 then proceed as in the single-use strat-
egy. After these steps have completed, the driver calls the
guest operating system to decrement its reference count.
If the reference count is zero, no other I/O transactions
are in progress that are using this mapping, so the guest
calls the VMM to destroy the mapping, as in steps 7–10
of the single-use strategy. Otherwise, the IOMMU map-
ping is still being used by another I/O transaction within
the guest OS, so steps 7–10 are skipped.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association18



3.3 Persistent Mappings

IOMMU mappings can further be reused by allowing
them to persist even after all I/O transactions using the
mapping have completed. Compared to a shared map-
ping strategy, such a persistent mapping strategy at-
tempts to further reduce the overhead associated with
creating and destroying IOMMU mappings inside the
VMM. Whereas sharing exploits reuse among mappings
only when a mapping is being actively used by at least
one I/O transaction, persistence exploits temporal reuse
across periods of inactivity.

The infrastructure and mechanisms for implementing
a persistent mapping strategy are similar to those re-
quired by a shared mapping strategy. The primary differ-
ence is that the guest operating system does not request
that mappings be destroyed after the I/O transactions us-
ing them complete. Therefore, in contrast to the shared
mapping strategy, when the guest’s reference count is
decremented after step 6, the I/O transaction is complete
and steps 7–10 are always skipped. This should dramati-
cally reduce the number of potentially costly invocations
of the VMM.

Eventually, it is possible that all of a guest’s memory
would become mapped using this strategy. Compared
to a shared mapping strategy, this increases the guest’s
exposure to intra-guest protection violations, which will
be discussed in Section 5.2. To limit this exposure, the
guest operating system can implement a reclamation pol-
icy that eventually removes mappings that are not cur-
rently in use by an I/O operation. For example, the sim-
ple reclamation policy that is used in the experiments of
this paper limits the total number of mappings. Once
this total is reached, a mapping that is not currently in
use would have to be destroyed before a new mapping
can be created.

3.4 Direct Mappings

To allow maximum reuse of IOMMU mappings and to
further reduce runtime overhead, it is possible to perma-
nently map the entire physical address space of the guest
operating system. Such a strategy is sometimes referred
to as a direct map, because this arrangement creates a
one-to-one mapping between IOMMU entries and phys-
ical pages for each physical page owned by the guest op-
erating system.

4 Software-based Protection

IOMMU-based protection strategies enforce safety even
when untrusted software provides unverified DMA de-
scriptors directly to hardware, because the DMA opera-
tions generated by any device are always subject to later

validation. However, an IOMMU is not necessary to en-
sure full isolation among untrusted guest operating sys-
tems, even when they use DMA-capable hardware that
directly reads and writes host memory. Rather than re-
lying on hardware to perform late validation during I/O
transactions, a lightweight software-based system per-
forms early validation of DMA descriptors before they
are used by hardware. The software-based strategy also
must protect validated descriptors from subsequent unau-
thorized modification by untrusted software, thus ensur-
ing that all I/O transactions operate only on buffers that
have been approved by the VMM. This software-based
strategy was previously introduced as a means for en-
suring DMA memory protection by untrusted guest op-
erating systems that have concurrent direct access to a
prototype network interface [23].

The runtime operation of a software-based protec-
tion strategy works much like a single-use IOMMU-
based strategy, since both validate permissions for each
I/O transaction. Whereas the single-use IOMMU-based
strategy uses the VMM to create IOMMU mappings for
each transaction, software-based I/O protection creates
the actual DMA descriptor. The descriptor is valid only
for the single I/O transaction. Unlike an IOMMU-based
system, an untrusted guest OS’s driver must first register
itself with the VMM during initialization. At that time,
the VMM takes ownership of the driver’s DMA descrip-
tor region and the driver’s status region, revoking write
permissions from the guest. This prevents the guest from
independently creating or modifying DMA descriptors,
or modifying the status region. Finally, the VMM must
prevent the guest from changing the descriptor and status
regions. This can be accomplished by only mapping the
device’s configuration registers into the VMM’s address
space, and not into the guests’ address spaces.

After initialization, the operation of the software-
based strategy is similar to the single-use IOMMU-based
strategy outlined in Section 3.1. Steps 1–3 of a software-
based strategy are nearly identical, with the exception
that the Guest OS is requesting a DMA descriptor, not
an IOMMU mapping, in Step 1. In step 4, the VMM
creates a DMA descriptor in the write-protected DMA
descriptor region, obviating the OS’s role in step 5. The
device carries out the requested operation using the vali-
dated descriptor, as in step 6, and because the descriptor
is write-protected, the untrusted guest cannot modify the
descriptor and thus cannot induce a transaction that has
not been explicitly authorized by the VMM. When the
device signals completion of the transaction, the VMM
inspects the device’s state (which is usually written via
DMA back to the host) to see which DMA descriptors
have been used. The VMM then processes those com-
pleted descriptors, as in step 10, permitting the associ-
ated guest memory buffers to be reallocated.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 19



Inter-Guest Intra-Guest
Bad Invalid Bad Bad Invalid Bad

Address Use Device Address Use Device
Direct-map x x x
Single-use x x x x x
Shared x x x x x
Persistent x x x x
Software x x x x

Table 1: Types of protection supported by the different DMA protection strategies.

In contrast to the IOMMU-based strategies, the
software-based strategy requires that the VMM actu-
ally insert DMA descriptors to the I/O device. This
requires that the VMM know the method of insertion
(i.e., programmed I/O or DMA) and the structure of
the DMA descriptor for a particular device. Further-
more, the VMM must be able to determine the descriptor
state of the device. Descriptor state specifies whether or
not the device can accept more descriptors and indicates
when previously posted descriptors have been processed.
Though these device-specific requirements inherently re-
quire some device-specific methods in the VMM, the
general method of software protection described here ap-
ply to DMA-capable devices in general. As described in
greater detail in [23], the implementation for software-
based DMA protection described here applies to devices
that organize their DMA descriptors in contiguous rings,
which includes many high-performance devices.

5 Protection Properties

The protection strategies presented in Sections 3 and 4
can be used to prevent the memory access violations pre-
sented in Section 2. Those violations can happen by
creating a DMA descriptor using a bad address, by re-
purposing and reusing a DMA descriptor after its initial
use, or by suffering a fault inflicted by a malfunction-
ing I/O device. These violations can occur both across
multiple guests (inter-guest) and within a single guest
(intra-guest). A virtual machine monitor must, at min-
imum, provide inter-guest protection in order to operate
reliably. A guest operating system may additionally ben-
efit if the system hardware or the virtual machine monitor
can be used to help provide intra-guest protection. This
section describes the protection properties of the five pre-
viously presented protection strategies. Table 1 summa-
rizes these faults and shows which strategy prevents what
faults in both the inter-guest and intra-guest cases.

5.1 Inter-Guest Protection

Perhaps surprisingly, all five strategies provide equiv-
alent inter-guest protection against “bad-address” and

“invalid-use” faults. In all of the IOMMU-based strate-
gies, if the device driver creates a DMA descriptor that
refers to memory that is not owned by that guest oper-
ating system, the device will be unable to perform that
DMA, as no IOMMU mapping will exist. The only re-
quirement to maintain this protection is that the VMM
must never create an IOMMU mapping for a guest that
does not refer to that guest’s memory. Similarly, only the
VMM can repurpose memory to another guest, so as long
as it does not do so while there is an existing IOMMU
mapping to that memory, inter-guest “invalid-use” faults
can never occur. The software-based approach provides
exactly the same guarantees by only allowing the VMM
to create DMA descriptors. Therefore, these strategies
allow the VMM to provide protection.

“Bad-device” faults are more difficult to prevent. If the
device is shared among multiple guest operating systems,
then no strategy can prevent this type of fault. For exam-
ple, if a network interface is allowed to receive packets
for two guest operating systems, the VMM cannot pre-
vent the device from sending the traffic destined for one
guest to the other. This is one simple example of many
the many problems that a shared device can cause.

However, if a device is privately assigned to a sin-
gle guest operating system, the IOMMU-based strate-
gies can be used to provide protection against faulty
device behavior. In this case, the VMM simply has
to ensure that there are only IOMMU mappings to the
guest that is assigned the device. In this manner, all
four IOMMU-based strategies can protect against such a
fault. However, the software-based strategy cannot pro-
vide this level of protection. Though DMA descriptors
are validated by the VMM to ensure that they only point
to memory for which the associated guest has appropri-
ate permissions, there is no software-only mechanism ca-
pable of stopping the device from simply ignoring the
DMA descriptor and accessing any physical memory.

5.2 Intra-Guest Protection

As is shown in Table 1, the five protection strategies dis-
cussed in this paper vary significantly according to how
they may be used by the guest OS to prevent intra-guest

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association20



faults of the types listed in Section 2. In order to prevent
a driver from creating a DMA descriptor with the wrong
address or using memory that has been repurposed by the
guest OS (i.e., errors of the first two types), the OS must
implement its own isolation strategy for inspecting and
verifying each I/O transaction. Typically, operating sys-
tems designed for commodity platforms simply trust that
the driver will request a valid, current address for an I/O
transaction.

To enable the OS to protect itself from drivers that
may construct DMA descriptors using bad intra-guest
addresses, the OS must be able to act as the gate-keeper
to I/O translations and thus DMA addresses. Unlike the
other four strategies, the direct-map strategy ensures that
all of a guest’s memory is mapped in the IOMMU at
any given time, and thus the driver does not have to re-
quest specific permission for I/O memory from the OS.
In this direct-map case, it is possible for the driver to
create a valid DMA descriptor to an arbitrary region of
the guest’s memory. This I/O transaction would succeed
with the blessing of the IOMMU so long as the memory
location is somewhere within the guest’s memory, even
though the OS may have never approved use of this loca-
tion for I/O. In all the other strategies, at least one specific
request for memory by the driver is required before the
OS will approve construction of the necessary IOMMU
mapping, and hence, all the other strategies can protect
against intra-guest “bad-address” faults.

Once the first request to create the IOMMU map-
ping has happened, however, none of the IOMMU-based
strategies can prevent a driver from invalidly reusing
that same mapping for a subsequent I/O transaction. In
these strategies, the driver is responsible for inform-
ing the OS when it is done with an IOMMU map-
ping. Even if the OS was modified to automatically re-
voke an IOMMU mapping when it detected the com-
pletion of a corresponding I/O event (as in the comple-
tion of a sendfile() operation or the free() of an
skbuff), the driver could still invalidly reuse a map-
ping after the original I/O event finished, but before the
OS could intervene to terminate the IOMMU mapping.
In the software strategy, however, the VMM automati-
cally detects when the device has completed a specific
I/O transaction and ensures that individual DMA descrip-
tors can never be reused. Thus, the software-based DMA
protection strategy can be used by an operating system to
detect and then prevent “invalid-use” faults.

Preventing “bad-device” faults from corrupting an in-
dividual guest’s memory requires that the device can
only access that guest’s memory while a valid I/O trans-
action is in-flight and has been authorized by the OS.
The direct-map strategy is incapable of preventing these
faults because it permanently maps all of a guest’s mem-
ory for I/O, and thus it may be used for I/O at any given

time. The persistent strategy allows IOMMU mappings
to exist in a valid state even after I/O transactions have
completed, and thus in this time period, it is possible
for a device fault to access one of those mapped loca-
tions and corrupt memory. As in the inter-guest case,
the software-based mechanism has no hardware enforce-
ment mechanism that could prevent the device from ini-
tiating an invalid transfer. Conversely, both the single-
use and shared-mapping strategies are specifically de-
signed to only permit valid IOMMU mappings to exist
during active I/O transactions, and hence they both guard
against device faults.

6 IOMMU Architectures

As discussed in Section 3, an IOMMU performs mem-
ory translation and protection for I/O devices. For each
direct memory access (DMA) performed by an I/O de-
vice, the IOMMU validates that the device is allowed to
access that memory and translates the memory address
appropriately. If the device is not allowed to access that
memory or there is no valid translation, then the IOMMU
terminates the DMA transaction.

A graphics address relocation table (GART) provides
similar memory translation functionality for I/O devices.
A GART translates memory addresses within a con-
tiguous range in the physical address space, called the
GART aperture. Unlike an IOMMU, only addresses
that fall within this aperture are translated by the GART.
This translation functionality is typically used by graph-
ics software libraries to simplify memory accesses per-
formed by the grapics card. Operating systems also
use GART hardware to provide translation of addresses
for devices that only support 32-bit addressing on 64-
bit platforms. Though the GART translates memory ad-
dresses in a similar manner to an IOMMU, the GART
does not protect memory from the device. Devices can
still access all physical memory directly using addresses
outside of the GART aperture.

Table 2 shows the performance differences between
the AMD Opteron with an integrated GART and two
modern IOMMU platforms, the IBM Calgary platform
and the Intel VT-d architecture. The table shows the av-
erage cost, in processor cycles, to update an I/O page
table (PT) entry, to flush the platform’s I/O translation
lookaside buffer (IOTLB) which caches translations, and
to both update an I/O page table entry and then imme-
diately flush the IOTLB. The Calgary, VT-d and GART
platforms feature processors operating at 2.5, 2.66, and
2.4 GHz, respectively. The performance differences
among the platforms arise directly from the differing
page table organizations and IOTLB overheads.

As the table shows, the Calgary platform has the high-
est overhead to install or modify a translation for a single

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 21



Platform
I/O PT IOTLB Update
Update Flush & Flush

IBM Calgary IOMMU 673 10207 10887
Intel VT-d IOMMU 991 1217 2213
AMD GART 27 486 579

Table 2: Microbenchmarks examining costs associated
with modern translation hardware, in processor cycles.

memory page. This is primarily caused by its unusually
high cost for flushing the system’s IOTLB, which is dis-
cussed at length by Ben-Yehuda et al. [6]. The Intel VT-d
architecture is more efficient, but its multilevel page table
and its IOTLB are still more expensive to update than the
flat page table organization of the GART and its simpler
IOTLB interface.

The Opteron’s GART was used to evaluate the pro-
tection strategies presented in this paper for two rea-
sons. First, at the time this research began, there were no
IOMMUs available for x86-based systems—the AMD
Opteron with a GART was the only suitable device. Sec-
ond, as Table 2 shows, the currently available IOMMUs
for x86-based systems, Calgary and VT-d, have higher
overheads than the GART. The only implication of this
choice is that the strategies that perform more frequent
mappings, single-use and shared, perform better than
they would with a higher-overhead IOMMU. In fact,
Ben-Yehuda, et al. found that the single-use strategy had
higher overhead than found in this paper [7].

7 Experimental Setup

The protection strategies described in Sections 3 and 4
were evaluated on a system with an AMD Opteron 250
processor. The Opteron’s GART is used to model the
behavior and functionality of IOMMU hardware, as de-
scribed in the previous section. The IOMMU- and
software-based protection strategies are implemented in
the open source Xen 3 virtual machine monitor [5]. Xen
differs from many virtualization systems in that it ex-
poses host physical addresses to the guest OS. In par-
ticular, the guest OS, and not the VMM, is responsible
for translating between pseudo-physical addresses that
are used at most levels of the guest OS and host phys-
ical addresses that are used at the device level. This does
not, however, fundamentally change the implementation
of the various protection strategies.

We evaluate these strategies on a variety of network-
intensive workloads, including a TCP stream mi-
crobenchmark, a voice-over-IP (VoIP) server benchmark,
and a static-content web server benchmark. The stream
microbenchmark either transmits or receives bulk data
over a TCP connection to a remote host. The VoIP
benchmark uses the OpenSER server. In this benchmark,

OpenSER acts as a SIP proxy and 50 clients simulta-
neously initiate calls as quickly as possible. The web
server benchmark uses the lighttpd web server to host
static HTTP content. In this benchmark, 32 clients si-
multaneously replay requests from various web traces as
quickly as possible. Three web traces are used in this
study: “CS”, “IBM”, and “WC”. The CS trace is from
the Rice University computer science departmental web
server and has a working set of 1.2 GB of data. The
IBM trace is from an IBM web server and has a working
set of 1.1 GB of data. The WC trace is from the 1998
World Cup soccer web server and has a working set of
100 MB of data. For all benchmarks, the client machine
is directly connected to the server without the use of a
switch, and the client is monitored to ensure that it is
never saturated. Hence, it is assured that the server ma-
chine is always the bottleneck. Each benchmark (TCP
stream, VoIP, and each web benchmark) is tested using
the specified strategy a minimum of 5 times each. The
performance reported is average performance, because
there is no significant variance across runs.

The server under test has two Gigabit Ethernet net-
work interface cards and features DDR 400 DRAM. The
network interfaces are publicly available prototypes that
are user-programmable, support shared direct access by
virtual machines, and support line-rate Gigabit Ethernet
speeds [18]. For each configuration except the direct-
map strategy, a single unprivileged guest operating sys-
tem has 1.4 GB of memory, and the IOMMU-based
strategies employ 512 MB of physical GART address
space for remapping (which corresponds to 131,072
unique mappings). For the Direct-map strategy, we use
a guest operating system with 512 MB of memory. We
simplify the implementation of the Direct-map strategy
to its minimum possible overhead by pre-mapping the
entire guest’s physical memory space permanently at
boot-time. Hence, this model represents the minimum
possible I/O overhead on this platform, since no map-
pings are created, destroyed, or modified during the ex-
periments. Its limited memory footprint, however, pre-
vents a fair evaluation of web-based workloads that have
a working set larger than 512 MB, including the IBM and
CS traces, and hence those benchmarks are not evaluated
using the Direct-map strategy.

In each benchmark, direct access for the guest to the
hardware is granted only for the network interface cards.
Because the guest’s memory allocation is large enough
to hold each benchmark and its corresponding data set,
other I/O is insignificant. For the web-based workloads,
the guest’s buffer cache is warmed prior to the tests.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association22



Protection CPU % Reuse (%) HC/
Strategy Total Prot. TX RX DMA

Stream Transmit
None 41 0 N/A N/A 0
Direct-map 41 0 N/A N/A 0
Single-use 64 23 N/A N/A .88
Shared 58 17 39 0 .55
Persistent 43 2 100 100 0
Software 56 15 N/A N/A .90

Stream Receive
None 53 0 N/A N/A 0
Direct-map 54 0 N/A N/A 0
Single-use 79 26 N/A N/A .37
Shared 73 20 39 0 .10
Persistent 59 5 100 100 0
Software 64 11 N/A N/A .39

Table 3: TCP Stream Profile.

8 Evaluation

Network server applications can stress network I/O in
different ways, depending on the characteristics of the
application and its workload. Applications may generate
large or small network packets, and may or may not uti-
lize zero-copy I/O. For an application running on a virtu-
alized guest operating system, these network characteris-
tics interact with the I/O protection strategy implemented
by the VMM. Consequently, the efficiency of the I/O pro-
tection strategy can affect application performance in dif-
ferent ways. Furthermore, the application’s behavior for
a given workload can directly affect the amount of map-
ping reuse that is exploitable by a given strategy. We first
provide an overview of performance and efficiency under
several different network workloads, and then we discuss
the sources of mapping reuse for the different workloads.

For all applications, we evaluate the five protection
strategies presented earlier, and we compare each to
the performance of a system lacking any I/O protection
at all (“None”). “Single-use”, “Shared”, “Persistent”,
and “Direct-map” all use an IOMMU to enforce protec-
tion, using either single-use, shared-mapping, persistent-
mapping, or direct-mapping strategies, respectively, as
described in Section 3. “Software” uses software-based
I/O protection, as described in Section 4.

8.1 TCP Stream

A TCP stream microbenchmark either transmits or re-
ceives bulk TCP data and thus isolates network I/O per-
formance. This benchmark does not use zero-copy I/O.
Table 3 shows the CPU efficiency and overhead asso-
ciated with each protection mechanism when streaming
data over two network interfaces. The table shows the

total percentage of CPU consumed while executing the
benchmark and the percentage of CPU spent implement-
ing the given protection strategy. The table also shows
the percentage of times a buffer to be used in an I/O
transaction (either transmit or receive) already has a valid
IOMMU mapping that can be reused. Finally, the table
shows the number of VMM invocations, or hypercalls
(HC), required per DMA descriptor used by the network
interface driver.

When either transmitting or receiving, all of the strate-
gies achieve the same TCP throughput (1865 Mb/s trans-
mitting, 1850 Mb/s receiving), but they differ according
to how costly they are in terms of CPU consumption. The
single-use protection strategy is the most costly, with its
repeated construction and destruction of IOMMU map-
pings consuming 23% of total CPU resources for trans-
mit and 26% for receive. The shared strategy reclaims
some of this overhead through its sharing of in-use map-
pings, though this reuse only exists for transmitted pack-
ets (data in the transmit-stream case, TCP ACK packets
in the receive case). The lack of reuse for received pack-
ets is caused by the paravirtualized (PV) Linux buffer
allocator, which dedicates an entire 4 KB page for each
receive buffer, regardless of the buffer’s actual size. This
over-allocation is an artifact of the PV-Linux I/O archi-
tecture, which was designed to remap received packets
to transfer them between guest operating systems.

Regardless, the persistent strategy achieves 100%
reuse of mappings, as the small number of persistent
mappings that cover network buffers essentially become
permanent. This further reduces overhead relative to
single-use and shared. Notably, the number of hyper-
calls per DMA operation rounds to zero. However, de-
tailed L2 cache profile statistics (not shown in the table)
reveals that management of the persistent mappings—
mapping lookup and reclamation, as described in Sec-
tion 3.3—incurs additional overhead in the processor’s
memory system. This consumes 2% of the processor re-
sources for the transmit-based workload and 5% for the
receive-based workload. The direct-map strategy does
not require any protection management at runtime and
has the same measured CPU utilization as the “None”
case for the transmit case. However, the direct-map strat-
egy incurs a small overhead in the receive case. This
represents the measured overhead on the system of sim-
ply using the GART for I/O transactions rather than us-
ing non-translated addresses. However, through exten-
sive reuse of existing IOMMU mappings, the persistent-
mapping strategy achieves nearly the same efficiency as
the direct-map case.

Surprisingly, the overhead incurred by the software-
based technique is noticeably less than the IOMMU-
based shared-mapping and single-use strategies. The
software-based technique certainly requires far more hy-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 23



Protection Calls/ CPU % Reuse (%) HC/
Strategy Sec. Prot. TX RX DMA

None 3005 0 N/A N/A 0
Direct-map 2997 0 N/A N/A 0
Single-use 2790 6.1 N/A N/A .68
Shared 2835 6.0 4 0 .65
Persistent 2997 0.1 100 100 0
Software 2895 3.5 N/A N/A .67

Table 4: OpenSER Profile.

percalls per DMA than the IOMMU-based strategies.
The cost of those VMM invocations and the associated
page-verification operations is similar to the cost of in-
specting mapping requests for shared- and single-use
strategies. However, the software strategy does not in-
cur the additional overhead of flushing the IOMMU’s
IOTLB via a programmed-I/O write, as is required with
the other strategies whenever a group of changes to an
I/O page table must be committed.

8.2 VoIP Server

Table 4 shows the performance and overhead profile for
the OpenSER VoIP application benchmark for the vari-
ous protection strategies. The OpenSER benchmark is
largely CPU-intensive and therefore only uses one of the
two network interface cards. Though the strategies rank
similarly in efficiency for the OpenSER benchmark as in
the TCP Stream benchmark, Table 4 shows one signif-
icant difference with respect to reuse of IOMMU map-
pings. Whereas the shared strategy was able to reuse
mappings 39% of the time for transmit packets under
the TCP Stream benchmark, OpenSER sees only 4%
reuse. Unlike typical high-bandwidth streaming applica-
tions, OpenSER only sends and receives very small TCP
messages in order to initiate and terminate VoIP phone
calls. Consequently, the shared strategy provides only a
minimal efficiency and performance improvement over
the high-overhead single-use strategy for the OpenSER
benchmark, indicating that sharing alone does not pro-
vide an efficiency gain for applications that are heavily
reliant on small messages.

8.3 Web Server

Table 5 shows the performance, overhead, and sharing
profiles of the various protection strategies when run-
ning a webserver under each of three different trace
workloads, “CS”, “IBM”, and “WC”. As in the TCP
Stream and OpenSER benchmarks, the different strate-
gies rank identically among each other in terms of per-
formance and overhead. Note that the direct-map strat-
egy is evaluated only for the “WC” trace, since it is

Protection HTTP CPU % Reuse (%) HC/
Strategy Mbps Prot. TX RX DMA

CS Trace
None 1336 0 N/A N/A 0
Single-use 1142 18.2 N/A N/A .66
Shared 1162 16.3 40 0 .42
Persistent 1292 3.3 100 100 0
Software 1212 9.1 N/A N/A .67

IBM Trace
None 359 0 N/A N/A 0
Single-use 322 8.5 N/A N/A .70
Shared 322 8.3 22 0 .58
Persistent 350 1.3 100 100 0
Software 326 4.5 N/A N/A .71

WC Trace
None 714 0 N/A N/A 0
Direct-map 697 0 N/A N/A 0
Single-use 617 11.8 N/A N/A .68
Shared 619 11.1 30 0 .50
Persistent 681 1.8 100 100 0
Software 632 5.9 N/A N/A .69

Table 5: Web Server Profile Using write().

the only web trace whose workload will fit entirely
within the direct-map configuration’s smaller guest op-
erating system memory allocation. Each of the differ-
ent traces generates messages of different sizes and re-
quires different amounts of web-server compute over-
head. For the write()-based implementation of the
web server, however, the server is always completely
saturated for each workload shown. “CS” is primar-
ily network-limited, generating relatively large response
messages with an average HTTP message size of 34 KB.
“IBM” is largely compute-limited, generating relatively
small HTTP responses with an average size of 2.8 KB.
“WC” lies in between, with an average response size of
6.7 KB. As the table shows, the amount of reuse ex-
ploited by the shared strategy is dependent on the av-
erage HTTP response being generated. Larger average
messages lead to larger amounts of reuse for transmitted
buffers under the shared strategy. Though larger amounts
of reuse slightly reduce the CPU overhead for the shared
strategy relative to the single-use strategy, the reuse is not
significant enough under these workloads to yield signif-
icant performance benefits.

As in the other benchmarks, receive buffers are not
subject to reuse with the shared-mapping strategy. Re-
gardless of the workload, the persistent strategy is 100%
effective at reusing existing mappings as the mappings
again become effectively permanent. As in the other
benchmarks, the software-based strategy achieves appli-
cation performance consistently between the shared and
persistent IOMMU-based strategies.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association24



Protection HTTP CPU % Reuse (%) HC/
Strategy Mbps Idle Prot. TX Hdr. TX File RX DMA

CS Trace
None 1378 35.0 0 N/A N/A N/A 0
Single-use 1291 7.0 27.6 N/A N/A N/A .37
Shared 1330 17.0 17.7 82 72 0 .17
Persistent 1363 28.0 6.7 100 96 100 .02
Software 1351 21.0 13.7 N/A N/A N/A .37

IBM Trace
None 475 0 0 N/A N/A N/A 0
Single-use 403 0 14.0 N/A N/A N/A .43
Shared 413 0 12.3 34 50 0 .35
Persistent 455 0 2.4 100 99 100 0
Software 422 0 6.2 N/A N/A N/A .43

WC Trace
None 961 0 0 N/A N/A N/A 0
Direct-map 953 0 0 N/A N/A N/A 0
Single-use 760 0 19.9 N/A N/A N/A .39
Shared 796 0 16.0 53 62 0 .27
Persistent 914 0 2.7 100 100 100 0
Software 833 0 8.7 N/A N/A N/A .40

Table 6: Web Server Profile Using Zero-Copy sendfile().

For all of the previous workloads, the network applica-
tion utilized the write() system call to send any data.
Consequently, all buffers that are transmitted to the net-
work interface have been allocated by the guest operating
system’s network-buffer allocator. Using the zero-copy
sendfile() interface, however, the guest OS gener-
ates network buffers for the packet headers, but then ap-
pends the application’s file buffers rather than copying
the payload. This interface has the potential to change
the amount of reuse exploitable by a protection strat-
egy, because data reused by the application can trans-
late to reused IOMMU mappings. Using sendfile(),
the packet-payload footprint for IOMMU mappings is no
longer limited to the number of internal network buffers
allocated by the OS, but instead is limited only by the
size of physical memory allocated to the guest.

Table 6 shows the performance, efficiency, and sharing
profiles for the different protection strategies for web-
based workloads when the server uses sendfile() to
transmit HTTP responses. Note that for the “CS” trace,
the host CPU is not completely saturated, and so the
CPU’s idle time percentage is nonzero. This idle time
is useful as a means to compare efficiency. For the other
traces, the CPU is completely saturated. The table sepa-
rates reuse statistics for transmitted buffers according to
whether or not the buffer was a packet header or packet
payload. As compared to Table 5, Table 6 shows that
the shared strategy is more effective overall at exploiting
reuse using sendfile() than with write(). Con-
sequently, the shared strategy gives a larger performance

and efficiency benefit relative to the single-use strategy
when using sendfile(). Table 6 also shows that the
persistent strategy is highly effective at capturing file
reuse, even though the total working-set size of the “CS”
and “IBM” traces are each more than twice as large as the
512 MB mapping space afforded by the GART. As in the
other benchmarks, the persistent strategy achieves per-
formance that closely approaches the minimal-overhead
direct-map strategy for the “WC” trace. Finally, the table
shows that though the shared-mapping strategy benefits
from better reuse characteristics and achieves better per-
formance with the sendfile()-based workload, the
software-based strategy still performs better than both
the shared or single-use IOMMU strategies for all work-
loads.

8.4 Sources of Reuse

The benchmarks explored in this study show varying lev-
els of reuse, as enumerated in the “Reuse” column of Ta-
bles 3, 4, 5, and 6. For these network-based workloads,
there are two primary sources of reuse: reuse within the
network-buffer (skbuff) allocator of the operating sys-
tem, and reuse among the payload buffers provided from
user-space for sendfile() operations. For each of
these types of reuse, there is both spatial and temporal
reuse.

Network buffers (called skbuffs in Linux) are data
buffers managed and allocated by the operating system
to either hold the data copied in as payload from a trans-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 25



mitting application, to hold the packet header that is
to be prepended onto a zero-copy data payload packet,
or to hold data that is received from the network in-
terface. Spatial reuse of an IOMMU mapping happens
when more than one usable skbuff can be allocated
out of a single memory page, since pages are the gran-
ularity of IOMMU mappings. For transmitted packet
data, this spatial reuse happens when either the packet
size (which may be dictated by the maximum transmis-
sion unit (MTU) size) is less than that of a physical page,
or when the network stack and network card are not uti-
lizing TCP segmentation offloading (TSO). For packet
headers prepended onto zero-copy sendfile() pack-
ets, spatial reuse can be fairly common because many of
the small TCP/IP headers can be allocated from a single
physical page.

Spatial reuse of skbuffs is entirely dependent on the
behavior of the skbuff allocator, however. As is illus-
trated by the lack of reuse in the “Shared” IOMMU map-
pings for received buffers, when the PV-Linux skbuff
allocator dedicates an entire physical page to a single net-
work buffer, spatial reuse is completely eliminated. Like-
wise, temporal reuse of skbuffs is dependent on the
behavior of the skbuff allocator. Clearly the default
skbuff allocator behavior is enabling some temporal
reuse, because received packets benefit from IOMMU-
mapping reuse in the “Persistent” case (and as previously
established, spatial reuse for this receive case is not pos-
sible given the allocator’s design).

Similarly, for payload data transmitted via zero-
copy sendfile, spatial reuse is dependent on the
packet size, the page size, and the presence (or lack)
of TSO capability. Temporal reuse, however, is depen-
dent on the application reuse patterns. Kim et al. have
explored NIC-based data caching using the same web
workloads that are presented in Table 6 and found sig-
nificant opportunity for reuse [13], so temporal reuse of
IOMMU mappings for these payload buffers is expected.

The experimental prototype hardware used in this pro-
totype does not support MTU sizes larger than 1500
bytes and does not support TSO, and so some additional
spatial reuse is present in these experiments that might
not be present on different hardware. The “Shared” and
“Persistent” strategies effectively recapture part of the
IOMMU-mapping efficiency that might be gained sim-
ply by using TSO- or large-MTU-capable hardware with
large messages. In both cases (IOMMU-mapping reuse
or large-packet aggregation) a single IOMMU mapping
is used for all the data within a physical page. How-
ever, the “Shared” and “Persistent” strategies leverage
the abundant spatial reuse for workloads that also have
many small packets, as in the VoIP benchmark and sev-
eral of the web workloads.

9 Related Work

Contemporary commodity virtualization solutions for-
bid direct I/O access and instead use software to im-
plement both protection and sharing of I/O resources
among untrusted guest operating systems. Confining
direct I/O accesses only within the trusted VMM en-
sures that all DMA descriptors used by hardware have
been constructed by trusted software. Though commod-
ity VMMs confine direct I/O within privileged software,
they provide shared access to their unprivileged VMs us-
ing different software interfaces. For example, the De-
nali isolation kernel provides a high-level interface that
operates on packets [22]. The Xen VMM provides an in-
terface that mimics that of a real network interface card
but abstracts away many of the register-level manage-
ment details [9]. VMware can support either an emu-
lated register-level interface that implements the precise
semantics of a hardware NIC, or it can support a higher-
level interface similar to Xen’s [19, 21].

IBM’s high-availability virtualization platforms fea-
ture IOMMUs and can support direct I/O by untrusted
guest operating systems. The POWER4 platform sup-
ports logical partitioning of hardware resources among
guest operating systems but does not permit concurrent
sharing of resources [12]. The POWER5 platform adds
support for concurrent sharing using software, effec-
tively sacrificing direct I/O access to gain sharing [4].
This sharing mechanism works similarly to commodity
solutions, effectively confining direct I/O access within
what IBM refers to as a “Virtual I/O Server”. Unlike
commodity VMMs, however, this software-based inter-
face is used solely to gain flexibility, not safety. When
a device is privately assigned to a single untrusted guest
OS, the POWER5 platforms can still use its IOMMU to
support safe, direct I/O access.

Previous studies have found that software-based ap-
proaches for I/O sharing and protection are especially
costly for network I/O. Sugerman et al. reported a
factor-of-6 network overhead penalty compared to na-
tive OS execution in a 2001 study of VMware’s net-
work virtualization [19]. Menon et al. later reached
similar results using the Xen virtual machine monitor,
reporting a factor-of-5 penalty versus native execution
in 2005 [16]. Menon et al. subsequently developed
software-based mechanisms to reduce this overhead for
transmit-oriented workloads but did not find any such
mechanism for receive-based workloads [15].

The high overhead of software-based network virtual-
ization motivated recent research toward hardware-based
techniques that support simultaneous, direct-access net-
work I/O by untrusted guest operating systems. Liu et
al. developed an Infiniband-based prototype that sup-
ports direct access by applications running within un-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association26



trusted virtualized guest operating systems [14]. This
work adopted the Infiniband model of registration-based
direct I/O memory protection, in which trusted software
(the VMM) must validate and register the application’s
memory buffers before those buffers can be used for
network I/O. Registration is similar to programming an
IOMMU but has different overhead characteristics, be-
cause registrations require interaction with the device
rather than modification of IOMMU page table entries.
Furthermore, unlike an IOMMU, registration alone can-
not provide any protection against a malfunctioning de-
vice, since the protection mechanism is partially en-
forced within the I/O device.

Willmann et al. previously developed an Ethernet-
based prototype that also supports concurrent, direct net-
work access by untrusted guest operating systems [23].
Rather than relying on hardware-based buffer regis-
tration for I/O protection, that work introduced the
software-based mechanism for ensuring DMA transac-
tion safety that is described in Section 4 of this paper.
This method is based on validating DMA descriptors
to be enqueued to a device and on guaranteeing the in-
tegrity of those descriptors throughout the duration of an
I/O transaction. Like registration-based virtualized hard-
ware, this software-based strategy offers no protection
against faulty device behavior.

Raj and Schwan also developed an Ethernet-based
prototype device that supports shared, direct I/O ac-
cess by untrusted guests [17]. Because of hardware-
implementation constraints, their prototype has limited
addressability of main memory and thus requires all net-
work data to be copied through VMM-managed bounce-
buffers. This strategy permits the VMM to validate each
buffer but does not provide any protection against faulty
accesses by the device within its addressable memory
range.

AMD and Intel have recently proposed the addi-
tion of IOMMUs to their upcoming architectures [3,
11]. However, IOMMUs are an established compo-
nent in high-availability server architectures [6]. Ben-
Yehuda et al. recently explored the TCP-stream net-
work performance of IBM’s state-of-the-art IOMMU-
based architectures using both non-virtualized, “bare-
metal” Linux and paravirtualized Linux running under
Xen [7]. As is found in this paper, they reported that the
state-of-the-art single-use IOMMU-management strat-
egy can incur significant overhead. They also identi-
fied platform-specific architectural limitations that re-
duce performance, such as the inability to individually
replace IOMMU mappings without globally flushing the
CPU cache. They hypothesized that modifications to the
single-use IOMMU-management strategy could avoid
such penalties. Though the GART-based IOMMU im-
plementation used in this paper does not incur the cache-

flush penalties associated with the IBM platform, single-
use mappings are costly nonetheless. Furthermore, this
paper proposes two specific strategies for IOMMU man-
agement that reduce IOMMU-related overhead, and ex-
amines their safety characteristics and effectiveness at re-
ducing overhead to increase performance across a variety
of real-world workloads.

10 Conclusions

This paper has evaluated a variety of DMA memory pro-
tection strategies for direct access to I/O devices within
virtual machine monitors by untrusted guest operating
systems. All of these strategies prevent the guest oper-
ating systems from directing the device to access mem-
ory that does not belong to that guest. The strategies do,
however, differ in their performance overhead, the level
of intra-guest protection, and their ability to deal with
misbehaving devices.

The traditional single-use strategy provides inter-guest
protection at the greatest cost, consuming from 6–26%
of the CPU. However, there is significant opportunity
to reuse IOMMU mappings, which in turn can reduce
the cost of providing protection. This reuse and its effi-
ciency advantages are demonstrated by the new shared-
and persistent-mapping strategies introduced in this pa-
per. Multiple concurrent network transmit operations are
typically able to share the same mappings 20–40% of the
time, yielding small performance improvements. How-
ever, due to Xen’s I/O architecture, network receive op-
erations are usually unable to share mappings. In con-
trast, using persistent mappings with a limit of 131,072
mappings enables nearly 100% reuse in almost all cases,
reducing the overhead of protection to only 2–13% of the
CPU.

The protection strategy supported by the VMM and
the OS can also greatly affect the degree to which each
guest OS can potentially protect itself by isolating the be-
havior of the hardware or isolating its own device drivers.
Though the direct-map strategy has the least overhead, it
is the only strategy that provides no mechanism for the
guest OS to protect itself from its own device drivers.
The persistent-mapping strategy, however, offers nearly
the same performance as the direct-map strategy while
still allowing some protection against misbehaving de-
vice drivers.

Finally, the software-based protection strategy eval-
uated in this paper performs better than two of the
IOMMU-based strategies (single-use and shared), con-
suming only 3–15% of the CPU for protection. How-
ever, the software-based mechanism still maintains strict
inter-guest memory protection. And though it cannot
guard against errors that originate in the hardware, the
software-based strategy supports the implementation of

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 27



enhanced intra-guest driver isolation. Therefore, an
IOMMU-based protection strategy does not necessar-
ily deliver superior performance or protection relative to
software-only strategies.

Acknowledgments

We wish to thank Muli Ben-Yehuda and Ben-Ami Yas-
sour for contributing IOMMU benchmark data for the
IBM Calgary and Intel VT-d IOMMU platforms. We also
wish to thank this paper’s conference shepherd, Michael
Swift, and our anonymous reviewers for their insightful
comments and suggestions that improved this paper.

References

[1] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of
the Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (Oct. 2006).

[2] ADVANCED MICRO DEVICES. Secure Virtual Machine Architec-
ture Reference Manual, May 2005. Revision 3.01.

[3] ADVANCED MICRO DEVICES. AMD I/O Virtualization Tech-
nology (IOMMU) Specification, Feb. 2007. Publication 34434,
Revision 1.20.

[4] ARMSTRONG, W. J., ARNDT, R. L., BOUTCHER, D. C., KO-
VACS, R. G., LARSON, D., LUCKE, K. A., NAYAR, N., AND

SWANBERG, R. C. Advanced virtualization capabilities of
POWER5 systems. IBM Journal of Research and Development
49, 4/5 (2005), 523–532.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In Proceed-
ings of the Symposium on Operating Systems Principles (SOSP)
(Oct. 2003).

[6] BEN-YEHUDA, M., MASON, J., KRIEGER, O., XENIDIS, J.,
DOORN, L. V., MALLICK, A., NAKAJIMA, J., AND WAHLIG,
E. Utilizing IOMMUs for virtualization in Linux and Xen. In
Proceedings of the Linux Symposium (July 2006).

[7] BEN-YEHUDA, M., XENIDIS, J., OSTROWSKI, M., RISTER,
K., BRUEMMER, A., AND DOORN, L. V. The price of safety:
Evaluating IOMMU performance. In Proceedings of the 2007
Linux Symposium (July 2007).

[8] DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualiza-
tion system including a virtual machine monitor for a computer
with a segmented architecture. US Patent #6,397,242 (Oct. 1998).

[9] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMSON, M. Safe hardware access
with the Xen virtual machine monitor. In Proceedings of the
Workshop on Operating System and Architectural Support for the
On Demand IT InfraStructure (OASIS) (Oct. 2004).

[10] INTEL. Intel Virtualization Technology Specification for the Intel
Itanium Architecture (VT-i), Apr. 2005. Revision 2.0.

[11] INTEL CORPORATION. Intel Virtualization Technology for Di-
rected I/O, May 2007. Order Number D51397-002, Revision 1.0.

[12] JANN, J., BROWNING, L. M., AND BURUGULA, R. S. Dynamic
reconfiguration: Basic building blocks for autonomic computing
on ibm pseries servers. IBM Systems Journal 42, 1 (2003), 29–37.

[13] KIM, H., PAI, V. S., AND RIXNER, S. Improving web server
throughput with network interface data caching. In Proceedings
of the Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems (Oct. 2002),
pp. 239–250.

[14] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. K. High per-
formance VMM-bypass I/O in virtual machines. In Proceedings
of the USENIX Annual Technical Conference (June 2006).

[15] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing
network virtualization in Xen. In Proceedings of the USENIX
Annual Technical Conference (June 2006).

[16] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN,
G. J., AND ZWAENEPOEL, W. Diagnosing performance over-
heads in the Xen virtual machine environment. In Proceedings
of the ACM/USENIX Conference on Virtual Execution Environ-
ments (June 2005).

[17] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In Proceedings of the
16th International Symposium on High Performance Distributed
Computing (June 2007).

[18] SHAFER, J., AND RIXNER, S. RiceNIC: A reconfigurable net-
work interface for experimental research and education. In Pro-
ceedings of the Workshop on Experimental Computer Science
(June 2007).

[19] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B. Virtual-
izing I/O devices on VMware Workstation’s hosted virtual ma-
chine monitor. In Proceedings of the USENIX Annual Technical
Conference (June 2001).

[20] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems. ACM Transac-
tions on Computer Systems 23, 1 (Feb. 2005), 77–110.

[21] VMWARE INC. VMware ESX server: Platform for virtualiz-
ing servers, storage and networking. http://www.vmware.
com/pdf/esx_datasheet.pdf, 2006.

[22] WHITAKER, A., SHAW, M., AND GRIBBLE, S. Scale and per-
formance in the Denali isolation kernel. In Proceedings of the
Symposium on Operating Systems Design and Implementation
(OSDI) (Dec. 2002).

[23] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent direct net-
work access for virtual machine monitors. In Proceedings of the
13th International Symposium on High Performance Computer
Architecture (Feb. 2007).

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association28




