
Debugging operating systems with time-traveling virtual machines

Samuel T. King, George W. Dunlap, and Peter M. Chen
University of Michigan

Abstract
Operating systems are difficult to debug with traditional
cyclic debugging. They are non-deterministic; they run
for long periods of time; they interact directly with hard-
ware devices; and their state is easily perturbed by the act
of debugging. This paper describes a time-traveling vir-
tual machine that overcomes many of the difficulties as-
sociated with debugging operating systems. Time travel
enables a programmer to navigate backward and forward
arbitrarily through the execution history of a particular
run and to replay arbitrary segments of the past execu-
tion. We integrate time travel into a general-purpose de-
bugger to enable a programmer to debug an OS in re-
verse, implementing commands such as reverse break-
point, reverse watchpoint, and reverse single step. The
space and time overheads needed to support time travel
are reasonable for debugging, and movements in time are
fast enough to support interactive debugging. We demon-
strate the value of our time-traveling virtual machine by
using it to understand and fix several OS bugs that are
difficult to find with standard debugging tools. Reverse
debugging is especially helpful in finding bugs that are
fragile due to non-determinism, bugs in device drivers,
bugs that require long runs to trigger, bugs that corrupt
the stack, and bugs that are detected after the relevant
stack frame is popped.

1 Introduction

Computer programmers are all-too-familiar with the task
of debugging complex software through a combination
of detective work, guesswork, and systematic search.
Tracking down a bug generally starts with running a pro-
gram until an error in the program manifests as a fault.
The programmer1 then seeks to start from the fault (the
manifestation of the error) and work backward to the
cause of the fault (the programming error itself). Cyclic
debugging is the classic way to work backward toward
the error. In cyclic debugging, a programmer uses a de-
bugger or output statements to examine the state of the
program at a given point in its execution. Armed with

1In this paper, “programmer” refers to the person debugging the sys-
tem, and “debugger” refers to the programming tool (e.g., gdb) used
by the programmer to examine and control the program.

this information, the programmer then re-runs the pro-
gram, stops it at an earlier point in its execution history,
examines the state at this point, then iterates.

Unfortunately, this classic approach to debugging is
difficult to apply when debugging operating systems.
Many aspects of operating systems make them difficult
to debug: they are non-deterministic; they run for long
periods of time; the act of debugging may perturb their
state; and they interact directly with hardware devices.

First, operating systems are non-deterministic. Their
execution is affected by non-deterministic events such as
the interleaving of multiple threads, interrupts, user in-
put, network input, and the perturbations of state caused
by the programmer who is debugging the system. This
non-determinism makes cyclic debugging infeasible be-
cause the programmer cannot re-run the system to exam-
ine the state at an earlier point.

Second, operating systems run for long periods of
time, such as weeks, months, or even years. Re-running
the system in cyclic debugging would thus be infeasible
even if the OS were completely deterministic.

Third, the act of debugging may perturb the state of
the operating system. The converse is also true: a mis-
behaving operating system may corrupt the state of the
debugger. These interactions are possible because the
operating system is traditionally the lowest level of soft-
ware on a computer, so the debugger’s code and data is
not isolated from the OS (unless the debugger uses spe-
cialized hardware such as an in-circuit emulator). Even
remote kernel debuggers depend on some basic function-
ality in the debugged OS, such as reading and writing
memory locations, setting and handling breakpoints, and
communicating with the remote debugger (e.g., through
the serial line). Using this basic functionality may be im-
possible on a sick OS. A debugger also needs assistance
from the OS to access hardware devices, and this func-
tionality may not work on a sick OS.

Finally, operating systems interact directly with hard-
ware devices. Devices are sources of non-determinism
that hinder cyclic debugging; they return data and gen-
erate interrupts that may change between runs. Devices
may also fail due to timing dependencies if a program-
mer pauses during a debugging session.

In this paper, we describe how to use time-traveling
virtual machines to overcome many of the difficulties as-

2005 USENIX Annual Technical Conference USENIX Association 1



sociated with debugging operating systems. By virtual
machine, we mean a software-implemented abstraction
of a physical machine that is at a low-enough level to
run an operating system. Running the OS inside a virtual
machine enables the programmer to stand outside the OS
being debugged. From this vantage point, the program-
mer can use a debugger to examine and control the exe-
cution of the OS without perturbing its state.

By time travel, we mean the ability to navigate back-
ward and forward arbitrarily through the execution his-
tory of a particular run and to replay arbitrary segments
of the past execution. For example, if the system crashed
due to an errant pointer variable, time travel would al-
low the programmer to go back to the point when that
pointer variable was corrupted; it would also allow the
programmer to fast-forward again to the crash point.
Time-traveling virtual machines allow a programmer to
replay a prior point in the execution exactly as it was ex-
ecuted the first time. The past is immutable in our model
of time travel; this ensures that there is only a single exe-
cution history, rather than a branching set of execution
histories. As with cyclic debugging, the goal of time
travel is to enable the programmer to examine the state
of the OS at prior points in the execution. However, un-
like cyclic debugging, time travel works in the presence
of non-determinism. Time travel is also more convenient
than classic cyclic debugging because it does not require
the entire run to be repeated.

In this paper, we describe the design and implemen-
tation of a time-traveling virtual machine (TTVM) for
debugging operating systems. We integrate time travel
into a general-purpose debugger (gdb) for our virtual
machine, implementing commands such as reverse step
(go back to the last instruction that was executed), re-
verse breakpoint (go back to the last time an instruction
was executed), and reverse watchpoint (go back to the
last time a variable was modified).

The space and time overhead needed to support time
travel is reasonable for debugging. For three workloads
that exercise the OS intensively, the logging needed to
support time travel adds 3-12% time overhead and 2-
85 KB/sec space overhead. The speed at which one
can move backward and forward in the execution his-
tory depends on the frequency of checkpoints in the time
region of interest. TTVM is able to insert additional
checkpoints to speed up these movements or delete exist-
ing checkpoints to reduce space overhead. After adding
checkpoints to a region of interest, TTVM allows a pro-
grammer to move to an arbitrary point within the region
in about 12 seconds.

The following real-life example clarifies what we
mean by debugging with time-traveling virtual machines
and illustrates the value of debugging in this manner.
The error we were attempting to debug was triggered

when the guest kernel attempted to call a NULL function
pointer. The error had corrupted the stack, so standard
debugging tools were unable to traverse the call stack
and determine where the invalid function call had orig-
inated. Using the TTVM reverse single step command,
we were able easily to step back to where the function
invocation was attempted and examine the state of the
virtual machine at that point.

The contributions of this paper are as follows. TTVM
is the first system that provides practical reverse debug-
ging for long-running, multi-threaded programs such as
an operating system. We show how to provide this ca-
pability at reasonable time and space overhead through
techniques such as virtual-machine replay, checkpoint-
ing, logging disks, and running native device drivers in-
side a virtual machine. We also show how to integrate
time travel in a debugger to enable new reverse debug-
ging commands. We illustrate the usefulness of reverse
debugging for operating systems through anecdotal ex-
perience and generalize about the types of situations in
which reverse debugging is particularly helpful.

2 Virtual machines

A virtual machine is a software abstraction of a physi-
cal machine [12]. The software layer that provides this
abstraction is called a virtual machine monitor (VMM).
An operating system can be installed and run on a vir-
tual machine as if it were running on a physical machine.
Such an OS is called a “guest” OS to distinguish it from
an OS that may be integrated into the VMM itself (which
is called the “host” OS).

Several features of virtual machines make them attrac-
tive for our purposes. First, because the VMM adds a
layer of software below the guest OS, it provides a pro-
tected substrate in which one can add new features. Un-
like traditional kernel debugging, these new features will
continue to work regardless of how sick the guest OS
becomes; the guest OS cannot corrupt or interfere with
the debugging functionality. We use this substrate to add
traditional debugging capabilities such as setting break-
points and reading and writing memory locations. We
also add non-traditional debugging features such as log-
ging and replaying non-deterministic inputs and saving
and restoring the state of the virtual machine.

Second, a VMM allows us to run a general-purpose,
full-featured debugger on the same physical machine as
the OS being debugged without perturbing the debugged
OS. Compared to traditional kernel debuggers, virtual
machines enable more powerful debugging capabilities
(e.g., one can read the virtual disk) with no perturbation
of or dependency on the OS being debugged. It is also
more convenient to use than a remote debugger because
it does not require a second physical machine.

2005 USENIX Annual Technical Conference USENIX Association2



host operating system

guest-kernel
host process

guest-user
host processgdb

TTVM functionality
(checkpointing, logging, replay)

Figure 1: System structure: UML runs as two user pro-
cesses on the host Linux OS, the guest-kernel host pro-
cess and the guest-user host process. TTVM’s ability to
travel forward and back in time is implemented by mod-
ifying the host OS. We extend gdb to make use of this
time traveling functionality. gdb communicates with the
guest-kernel host process via a remote serial protocol.

Finally, a VMM offers a narrow and well-defined in-
terface: the interface of a physical machine. This inter-
face makes it easier to implement the checkpointing and
replay features we add in this paper, especially compared
to the relatively wide and complex interface offered by an
operating system to its application processes. The state
of a virtual machine is easily identified as the virtual
machine’s memory, disk, and registers and can thus be
saved and restored easily. Replay is easier to implement
in a VMM than an operating system because the VMM
exports an abstraction of a uniprocessor virtual machine
(assuming a uniprocessor physical machine), whereas an
OS exports an abstraction of a virtual multiprocessor to
its application processes.

The VMM used in this paper is User-Mode Linux
(UML) [8], modified to support host device drivers in the
guest OS. UML is implemented as a kernel modification
to a host Linux OS (Figure 1)2. The virtual machine runs
as two user processes on the host OS: one host process
(the guest-kernel host process) runs all guest kernel code,
and one host process (the guest-user host process) runs
all guest user code. The guest-kernel host process uses
the Linux ptrace facility to intercept system calls and
signals generated by the guest-user host process. The
guest-user host process uses UML’s skas-extension to
the host Linux kernel to switch quickly between address
spaces of different guest user processes.

UML’s VMM exports a para-virtualized architecture
that is similar but not identical to the host hardware [28].
The guest OS in UML, which is also Linux, must be
ported to run on top of this virtual architecture. Each
piece of virtual hardware in UML is emulated with a
host service. The guest disk is emulated by a raw disk
partition on the host; the guest memory is emulated by
a memory-mapped file on the host; the guest network

2We use the skas (separate kernel address space) version of UML,
which requires a patch of the host kernel.

card is emulated by a host TUN/TAP virtual Ethernet
driver; the guest MMU is emulated by calls to the host
mmap and mprotect system calls; guest timer and de-
vice interrupts are emulated by host SIGALRM and SI-
GIO signals; the guest console is emulated by standard
output. The guest Linux’s architecture-dependent layer
uses these host services to interact with the virtual hard-
ware.

Using a para-virtualized VMM [28] such as UML
raises the issue of fidelity: is the guest OS similar enough
to an OS that runs on the hardware (i.e., a host OS)
that one can track down a bug in a host OS by debug-
ging the guest OS? The answer depends on the specific
VMM: as the para-virtualized architecture diverges from
the hardware architecture, a guest OS that runs on the
para-virtualized architecture diverges from the host OS,
and it becomes less likely that a bug in the host OS can
be debugged in the guest OS. Timing-dependent bugs
may also manifest differently when running an OS on a
virtual machine than when running on hardware.

UML’s VMM is similar enough to the hardware inter-
face that most code is identical between a host OS and a
guest OS. The differences between the host OS and guest
OS are isolated to the architecture-specific code, and al-
most all these differences are in device drivers. Not in-
cluding device driver code, 92% of the code (measured in
lines of .c and .S files) are identical between the guest and
host OS. Because many OS bugs are in device drivers [7],
we added the capability to UML to use unmodified real
device drivers in the guest OS to drive devices on the host
platform (Section 3.2)[17, 11]. This makes it possible to
debug problems in real device drivers with our system,
and we have used our system to find, fix, and submit a
patch for a bug in the host OS’s USB serial driver. With
our extension to UML, 98% of the host OS code base
(including device drivers) can be debugged in the guest
OS. Applying the techniques in this paper to a non para-
virtualized VMM such as VMware would enable reverse
debugging to work for any host OS bug.

Running an OS inside a virtual machine incurs over-
head. We measured UML’s virtualization overhead as
0% for the POV-ray ray tracer (a compute-intensive
workload), 76% for a build of the Linux kernel (a system-
call intensive workload which is expensive to virtualize
[15]), and 15% for SPECweb99 (a web-server work-
load). This overhead is acceptable for debugging (in
fact, UML is used in production web hosting environ-
ments). If lower overhead is needed, the ideas in this
paper can be applied to faster virtual machines such as
Xen [3] (3% overhead for a Linux kernel build), UM-
Linux/FAUmachine [15] (35% overhead for a Linux ker-
nel build), or a hardware-supported virtual machine such
as Intel’s upcoming Vanderpool Technology.

2005 USENIX Annual Technical Conference USENIX Association 3



3 Time-traveling virtual machines

A time-traveling virtual machine should have two capa-
bilities. First, it should be able to reconstruct the com-
plete state of the virtual machine at any point in a run,
where a run is defined as the time from when the virtual
machine was powered on to the last instruction it exe-
cuted. Second, it should be able to start from any point
in a run and from that point replay the same instruction
stream that was executed during the original run from
that point. This section describes how TTVM achieves
these capabilities through a combination of logging, re-
play, and checkpointing.

3.1 Logging and replaying a VM

The foundational capability in TTVM is the ability to re-
play a run from a given point in a way that matches the
original run instruction for instruction. Replay causes the
virtual machine to transition through the same states as
it went through during the original run; hence replay en-
ables one to reconstruct the complete state of the virtual
machine at any point in the run. TTVM uses the ReVirt
logging/replay system to provide this capability [9]. This
section briefly summarizes how ReVirt logs and replays
the execution of a virtual machine.

A virtual machine can be replayed by starting
from a checkpoint, then replaying all sources of non-
determinism [5, 9]. For UML, the sources of non-
determinism are external input from the network, key-
board, and real-time clock and the timing of virtual inter-
rupts. The VMM replays network and keyboard input by
logging the calls that read these devices during the origi-
nal run and regenerating the same data during the replay
run. Likewise, we configure the CPU to cause reads of
the real-time clock to trap to the VMM, where they can
be logged or regenerated.

To replay a virtual interrupt, ReVirt logs the instruc-
tion in the run at which it was delivered and re-delivers
the interrupt at this instruction during replay. This point
is identified uniquely by the number of branches since
the start of the run and the address of the interrupted in-
struction [19]. ReVirt uses a performance counter on the
Intel Pentium 4 CPU to count the number of branches
during logging, and it uses the same performance counter
and instruction breakpoints to stop at the interrupted in-
struction during replay. Replaying interrupts enables
ReVirt to replay the scheduling order of multi-threaded
guest operating systems and applications, as long as the
VMM exports the abstraction of a uniprocessor virtual
machine [22]. Researchers are investigating ways to sup-
port replay on multiprocessors [29].

3.2 Host device drivers in the guest OS

In general, VMMs export a limited set of virtual devices.
Some VMMs export virtual devices that exist in hard-
ware (e.g., VMware Workstation exports an emulated
AMD Lance Ethernet card); others (like UML) export
virtual devices that have no hardware equivalent. Export-
ing a limited set of virtual devices to the guest OS is usu-
ally considered a benefit of virtual-machine systems, be-
cause it frees guest OSs from needing device drivers for
myriad host devices [26]. However, when using virtual
machines to debug operating systems, the limited set of
virtual devices prevents programmers from using and de-
bugging drivers for real devices; programmers can only
debug the architecture-independent portion of the guest
OS. There are two ways to address this limitation and en-
able the programmer to run and debug real device drivers
in a guest OS. With both strategies, real device drivers
can be included in the guest OS without being modified
or re-compiled.

The first way to run a real device driver in the guest
OS is for the VMM to provide a software emulator for
that device. The device driver issues the normal set of
I/O instructions: IN/OUT instructions, memory-mapped
I/O, DMA commands, and interrupts. The VMM traps
these privileged instructions and forwards them to/from
the software device emulator. With this strategy, ReVirt
can log and replay device driver code in the same way it
logs and replays the rest of the guest OS. If one runs the
VMM’s software device emulator above ReVirt’s log-
ging system (and above the checkpoint system described
in Section 3.3), ReVirt will guide the emulator and device
driver code through the same instruction sequence during
replay as they executed during logging. While this first
strategy fits in well with the existing ReVirt system, it
only works if one has an accurate software emulator for
the device whose driver one wishes to debug.

We modified UML to provide a second way to run real
device drivers in the guest OS, which works even when
no software emulator exists for the device of interest.
With this strategy, the VMM traps and forwards the priv-
ileged I/O instructions and DMA requests issued by the
guest OS device driver to the actual hardware. The pro-
grammer specifies which devices UML can access, and
the VMM enforces the proper I/O port space and mem-
ory access for the device.

This second strategy requires extensions to enable Re-
Virt to log and replay the execution of the device driver.
Whereas the first strategy placed the device emulator
above the ReVirt logging layer, the second strategy for-
wards driver actions to the actual hardware device. Be-
cause this device may not be deterministic, ReVirt must
log any information sent from the device to the driver.
Specifically, ReVirt must log and replay the data returned

2005 USENIX Annual Technical Conference USENIX Association4



by IN instructions, memory-mapped I/O instructions,
and DMA memory loads. To avoid confusing the device,
ReVirt suppresses output to the device during replay.

The VMM must also be modified to support run-
ning real device drivers in the guest OS. Supporting x86
IN/OUT instructions is straightforward since they are
privileged and naturally trap to the VMM. After receiv-
ing a trap from an IN/OUT instruction, TTVM verifies
the port address and forwards the instruction to the de-
vice. After the instruction is executed, TTVM transpar-
ently passes the result back to the guest. Like IN/OUT
instructions, interrupt handling requires few modifica-
tions. UML already uses signals in place of hardware
interrupts, so when the VMM receives an interrupt from
a device, it is forwarded to the guest using signals.

To support memory-mapped I/O and DMA, we aug-
mented the guest OS’s memory-mapping and DMA al-
location routines to request access to the host’s phys-
ical memory by issuing system calls to the host. For
memory-mapped I/O, the guest OS asks the host to map
the desired I/O region into the guest OS’s address space;
for DMA, the guest OS asks the host to allocate physi-
cal memory suitable for DMA transfers. These actions
are necessary since the guest is controlling a real de-
vice. However, because ReVirt must log all loads from
the resulting virtual address range, the guest cannot have
unchecked access to the newly allocated resources. As
a result, TTVM uses page protections to trap all inter-
actions with the allocated virtual memory range. Upon
receiving a trap, TTVM emulates all guest driver loads
and stores that interact with memory-mapped I/O space
or DMA memory range. This provides sufficient oppor-
tunity to log and replay all interactions between the guest
driver and the device.

One shortcoming of this approach is that the extra
traps and logging operations slows loads and stores to
memory-mapped I/O space and DMA memory. In prac-
tice, this slowdown is minimized since most bulk trans-
fers are implemented using x86 repeat string in-
structions, so bulk transfers cause only a single trap. We
experienced no noticeable slowdown as a result of using
this mechanism. For example, a guest USB serial port
driver can operate at full speed, and the guest OS sound-
card driver can play an MP3 music clip and record audio
in real-time.

Allowing the guest device driver to initiate DMA
transfers allows the guest OS to potentially corrupt host
memory, since the device can access all of the host’s
physical memory [17]. The programmer who is wor-
ried about this possibility can interpret DMA setup com-
mands and deny access to memory outside the intended
range. Some recent processors, such as AMD’s Opteron,
provide an I/O MMU which can be used to restrict ac-
cesses to the intended memory range.

write
D

A

B

C

log
redo

checkpoint 1

write
A

write write write
B C E

write
A

A

log
undo

D

E

checkpoint checkpoint2 3

Figure 2: Checkpoints of the memory pages are repre-
sented as undo and redo logs. The figure shows the redo
and undo logs that would results for checkpoint � for the
given sequence of writes to memory pages. The same
technique is used to store the changes to the mappings of
guest � host disk blocks.

3.3 Checkpointing for faster time travel

Logging and replaying a virtual machine from a single
checkpoint at the beginning of the run is sufficient to
recreate the state at any point in the run from any other
point in the run. However, logging and replay alone is not
sufficient to recreate this state quickly because the virtual
machine must re-execute each instruction from the be-
ginning to the desired point, and this period may span
many days. To accelerate time travel over long periods,
TTVM takes periodic checkpoints while the virtual ma-
chine is running [23] (ReVirt started only from a disk
checkpoint of a powered-off virtual machine).

The simplest way to checkpoint the virtual machine is
to save a complete copy of the state of the virtual ma-
chine. This state is comprised of the CPU registers, the
virtual machine’s physical memory, the virtual disk, and
any state in the VMM or host kernel that affects the exe-
cution of the virtual machine. For UML, this host kernel
state includes the address space mappings for the guest-
user host process and the guest-kernel host process, the
state of open host file descriptors, and the registration
of various signal handlers (analogous to the interrupt de-
scriptor table on real hardware).

Saving a complete copy of the virtual-machine state
is simple but inefficient. We use copy-on-write and ver-
sioning to reduce the space and time overhead of check-
pointing for both memory pages and disk blocks.

We use copy-on-write on memory pages to save only
those pages that have been modified since the last check-
point. Starting with the memory contents at a current
point, the memory state can be restored back to a prior
checkpoint by restoring the memory pages in the undo
log. The memory undo log at checkpoint � contains
the set of memory pages that have been modified be-

2005 USENIX Annual Technical Conference USENIX Association 5

 



tween checkpoint � and checkpoint ����� , with the values
of the pages in the undo log being those at checkpoint �
(Figure 2). Analogously, TTVM uses a redo log of
memory to enable a programmer to move forward in
time to a future checkpoint. The memory redo log at
checkpoint � contains the set of memory pages that have
been modified between checkpoint ���	� and checkpoint � ,
with the values of these memory pages again being those
at checkpoint � (Figure 2). If a memory page is modified
during two successive checkpoint intervals, the memory
undo and redo logs for the checkpoint between these two
intervals will contain the same values for that memory
page. TTVM detects this case and shares such data be-
tween the undo and redo logs. E.g., in Figure 2, page A’s
data is shared between checkpoint � ’s undo and redo logs.

We use similar logging techniques for disk, but we add
an extra level of indirection to avoid copying disk blocks
into the undo and redo logs. The extra level of indirection
is implemented by saving multiple versions of each guest
disk block [25] and maintaining, in memory, the cur-
rent mapping from guest disk blocks to host disk blocks.
The first time a guest disk block is written after a check-
point, TTVM writes the data to a free host disk block
and updates the mapping from guest to host disk blocks
to point to the new host disk block. This strategy saves
copying the before-image of the guest disk block into the
undo log of the prior checkpoint, and it saves copying the
after-image of the disk block into the redo log of the next
checkpoint. The undo and redo logs need store only the
changes to the guest � host disk block map. Changes to
the map are several orders of magnitude smaller than the
disk block data and can be write buffered in non-volatile
RAM to provide persistence if the host crashes.

3.4 Time traveling between points of a run

TTVM enables a programmer to travel arbitrarily back-
ward and forward in time through a run. Time travel-
ing between points in a run requires a combination of
restoring to a checkpoint and replay. To travel from
point A to point B, TTVM first restores to the checkpoint
that is prior to point B (call this checkpoint � ). TTVM
then replays the execution of the virtual machine from
checkpoint � to point B. The more frequently checkpoints
are taken, the smaller the expected duration of the replay
phase of time travel.

Restoring to checkpoint � requires several steps.
TTVM first restores the copy saved at checkpoint � of the
virtual machine’s registers and any state in the VMM or
host kernel that affects the execution of the virtual ma-
chine. Restoring the memory image and guest � host
disk block map to the values they had at checkpoint �
makes use of the data stored in the undo logs if mov-
ing backward in time, or redo logs when moving for-

ward in time. Consider how to move from a point
after checkpoint �
� � backward to checkpoint � (restor-
ing to a checkpoint in the future uses the redo log in
an analogous manner). TTVM first restores the mem-
ory pages and disk block map entries from the undo
log at checkpoint � . It then examines the undo log at
checkpoint �
��� and restores any memory pages and disk
block map entries that were not restored by the undo log
at checkpoint � . Finally, TTVM examines the undo log at
checkpoint �
� � and restores any memory pages and disk
block map entries that were not restored by the undo logs
at checkpoint � or checkpoint ����� . Applying the logs in
this order ensures that each memory page is written at
most once.

3.5 Adding and deleting checkpoints

An initial set of checkpoints are taken during the orig-
inal, logged run. TTVM supports the ability to add or
delete checkpoints from this original set. At any time, the
user may choose to delete existing checkpoints to free up
space. While replaying a portion of a run, a programmer
may choose to supplement the initial set of checkpoints
to speed up anticipated time-travel operations. This sec-
tion describes how to manipulate the undo and redo logs
of the memory pages when adding or deleting a check-
point. The undo and redo logs for the guest � host disk
block map are maintained in exactly the same manner.

Adding a new checkpoint can be done when the pro-
grammer is replaying a portion of a run from a check-
point (say, checkpoint � ). TTVM can add a new
checkpoint � at the current point of replay (between exist-
ing checkpoint � and checkpoint � ) by creating the undo
and redo logs for checkpoint � . TTVM identifies the
memory pages to store in checkpoint � ’s redo log by
maintaining a list of the memory pages that are modified
since the system started replaying at checkpoint � , just
as it does during logging to support the copy-on-write
undo log. TTVM conservatively identifies the memory
pages to store in checkpoint � ’s undo log as the same
set of pages in checkpoint � ’s undo log, but with the val-
ues at the current point of replay. TTVM could remove
memory pages from checkpoint � ’s undo log that were not
written between checkpoint � and checkpoint � , but this is
not needed for correctness and TTVM does not currently
include this optimization. It is difficult to remove ex-
tra pages from checkpoint � ’s redo log without executing
through to checkpoint � , because knowing which pages to
remove would require knowing the time of the last mod-
ification to the page, and this would require trapping all
modifications to all memory pages.

Deleting an existing checkpoint (presumably to free
up space for a new checkpoint) can be done during
the original logging run or when the programmer is

2005 USENIX Annual Technical Conference USENIX Association6

 



replaying a portion of a run. TTVM goes through
two steps to delete checkpoint � (between checkpoint �
and checkpoint � ). TTVM first moves the pages in
checkpoint � ’s undo log to checkpoint � ’s undo log. A
page that already exists in checkpoint � ’s undo log takes
precedence over a page from checkpoint � ’s undo log.
Similarly, TTVM moves the pages in checkpoint � ’s redo
log to checkpoint � ’s redo log. A page that already exists
in checkpoint � ’s redo log takes precedence over a page
from checkpoint � ’s redo log.

3.6 Expected usage model

We expect programmers to use TTVM in three phases.
Throughout each phase, TTVM will take checkpoints at
a specified frequency (the default is every 25 seconds).
In phase 1, the programmer runs a test to trigger an error.
This phase may last a long time (hours or days). As we
will see in Section 5, taking checkpoints every 25 sec-
onds adds less than 4% time overhead, so it is reasonable
to leave checkpointing on even during long runs.

For long runs, the space needed to store the undo/redo
logs for all checkpoints will build up and TTVM will be
forced to delete some checkpoints. By default, TTVM
keeps more checkpoints for periods near the current time
than for periods farther in the past; this policy assumes
that periods in the near past are likely to be the ones of
interest during debugging. TTVM chooses checkpoints
to delete by fitting them to a distribution in which the
distance between checkpoints increases exponentially as
one goes farther back in time [4].

In phase 2, the programmer attaches the debugger,
switches the system from logging to replay, and prepares
to debug the error. To speed up later time-travel oper-
ations, programmers can specify a shorter interval be-
tween checkpoints (say, every 10 seconds), then replay
the portion of the run they expect to debug (say, a 10
minute interval). As in phase 1, TTVM will keep check-
points according to an exponential distribution that fa-
vors checkpoints close to the current (replaying) time.

In phase 3, the programmer debugs the error by time-
traveling forward and backward through the run. We
next describe new debugging commands that allow a pro-
grammer to navigate conveniently through the run.

4 TTVM-aware gdb

In this section, we discuss how to integrate the time trav-
eling capability of TTVM into a debugger (gdb). We
first introduce the new reverse debugging commands and
discuss how they are implemented. We then describe
how to manage the interaction of time traveling with the
state changes generated by gdb. Finally, we describe

how our prototype implements communication between
gdb and TTVM.

4.1 Time travel within gdb

In addition to the standard set of commands available
to debuggers, TTVM allows gdb to restore prior check-
points, replay portions of the execution, and examine ar-
bitrary past states. A promising application of these tech-
nique is providing the illusion of virtual-machine reverse
execution.

Reverse execution, when applied to debugging, pro-
vides the functionality standard debuggers are often try-
ing to approximate. For example, a kernel may follow
an errant pointer, read an unintended data structure, and
crash. Using a standard debugger, the programmer can
gain control when the crash occurs. A common approach
at this point is to traverse up the call stack. This approx-
imates reverse execution because it allows the program-
mer to see the partial state of function invocations that
occurred before the crash. However, it only allows the
programmer to see variables stored on the stack, and it
only shows the values for those variables at the time of
each function invocation. Another approach is to re-run
the system with a watchpoint set on the pointer variable.
However, this approach works only if the bug is deter-
ministic. Also, the programmer may have to step through
many watchpoints to get to the modification of interest.
Ideally, the programmer would like to go to the last time
the pointer was modified. However, current debugging
commands only allow the programmer to go to the next
modification of the pointer.

To overcome this deficiency, we add a new com-
mand to gdb called reverse continue. reverse
continue takes the virtual machine back to a previous
point, where the point is identified by the reverse equiv-
alents of forward breakpoints, watchpoints, and steps. In
the example above, the programmer could set a watch-
point on the pointer variable and issue the reverse
continue command. After executing this command,
the debugger would return control to the programmer
at the last time the variable was modified. This jump
backward in time restores all virtual-machine state, so
the programmer could then use standard gdb commands
to gather further information.
reverse continue is implemented using two ex-

ecution passes (Figure 3). In the first pass, TTVM re-
stores a checkpoint that is earlier in the execution and
replays the virtual machine until the current location is
reached again. During the replay of the first pass, gdb re-
ceives control on each trap caused by gdb commands is-
sued by the programmer (e.g., breakpoints, watchpoints,
steps). gdb keeps a list of these traps and, when the first
pass is over, allows the programmer to choose a trap to

2005 USENIX Annual Technical Conference USENIX Association 7

 



(1)

(3)

(5)
(4)

(2)

BP BP
1

BP1 2 3

checkpoint time x

Figure 3: Reverse continue uses two execution passes.
The programmer calls reverse continue at time x.
In the first pass, (1) TTVM restores checkpoint � , then (2)
replays execution until time x. Along the way, TTVM
makes note of breakpoints BP � , BP � , and BP � . When
time x is reached, the programmer sees a list of these
breakpoints and selects one to go back to. In the example
shown here, the programmer selects BP � . In the second
pass, TTVM again (3) restores checkpoint � and (4) re-
plays execution, but this time TTVM stops at breakpoint
BP � and returns control to the programmer (5).

time travel back to. During the second pass, gdb again
restores the same checkpoint and replays. When the se-
lected trap is encountered during the second pass, gdb
returns control to the programmer.

This approach is general enough that it provides re-
verse versions to all gdb commands. For example, the
programmer can set instruction breakpoints, conditional
breakpoints, data watchpoints, or single steps (or com-
binations thereof), and the reverse continue com-
mand keeps track of all resulting traps and allows the
programmer to go back to any of them. We have found
each of these reverse commands useful in our kernel de-
bugging (Section 6).

We found reverse step to be a particularly useful
command (reverse step goes back a specified num-
ber of instructions). This command is particularly use-
ful because it tracks instructions executed in guest kernel
mode regardless of the kernel entry point. For example,
if gdb has control inside a guest interrupt handler, and
the interrupt occurred while the guest kernel was run-
ning, reverse step can go backward to determine
which guest kernel instruction was preempted. We im-
plemented an optimized version of the reverse step
command because it is used so frequently and because
the unoptimized version generates an inordinate number
of traps. On x86, gdb uses the CPU’s trap flag to sin-
gle step forward. reverse step also uses the trap
flag, but doing so naively would generate a trap to gdb
on each instruction replayed from the checkpoint. To re-
duce the number of traps caused by reverse step,
we wait to set the trap flag during each pass’s replay
until the system is near the current point. Our current im-

plementation defines “near” to be within one system call
of the current point, but one could easily define “near” to
be within a certain number of branches.

Finally, we implemented a goto command that a pro-
grammer can use to jump to an arbitrary time in the ex-
ecution, either behind or ahead of the current point. Our
current prototype defines time in a coarse-grained man-
ner by counting guest system calls, but it is possible to
define time by logging the real-time clock, or by count-
ing branches. goto is most useful when the program-
mer is trying to find a time (possibly far from the current
point) when an error condition is present.

4.2 TTVM/debugger interactions
Time traveling must affect debugging state (e.g., the
set of breakpoints) differently from how it affects other
virtual-machine state. Time-travel operations change
virtual-machine state but should preserve debugging
state. For example, if the programmer sets a break-
point and executes reverse continue, the break-
point must be unperturbed by the checkpoint restoration
so that it can trap to gdb during the replay passes. Un-
fortunately, gdb mingles debugging state and virtual-
machine state. For example, gdb implements software
breakpoints by inserting breakpoint instructions di-
rectly into the code page of the process being debugged.

To enable special treatment of debugging state, TTVM
tracks all modifications gdb makes to the virtual state.
This allows TTVM to make debugging state persistent
across checkpoint restores by manually restoring the de-
bugging state after the checkpoint is restored. In addi-
tion, TTVM removes any modifications caused by the
debugger before taking a checkpoint, so that the check-
point includes only the original virtual-machine state.

4.3 TTVM on guest applications
While the focus of this paper is using TTVM to debug
guest kernels, TTVM can also be used to debug multi-
threaded guest applications. In order to debug guest ap-
plications, TTVM must be able to detect the currently
running guest process from within the host kernel.

Detecting the current guest process is important be-
cause UML multiplexes a single host process address
space between all guest application processes. Because
of this multiplexing, TTVM must detect which guest
process is currently occupying the host process address
space before applying any modifications needed for de-
bugging. For example, if TTVM tries to set a breakpoint
in process A, but process B is currently running, TTVM
must wait until process A is switched back in before ap-
plying any changes. Otherwise, process B will incor-
rectly trigger the breakpoint.

2005 USENIX Annual Technical Conference USENIX Association8

 



To determine the current guest process, TTVM must
understand guest kernel task structs. Fortunately, the
guest kernel stack pointer is known within the host ker-
nel, and the current guest application pid is in a well-
known location relative to the stack pointer.

With these enhancements, TTVM enables program-
mers to use reverse debugging commands for debugging
guest applications.

4.4 Reverse gdb implementation
gdb and TTVM communicate via the gdb remote serial
protocol (Figure 1). The remote serial protocol between
gdb and TTVM is implemented in a host kernel device
driver. gdb already understands the remote serial proto-
col and so need not be modified. The host kernel device
driver receives the low-level remote protocol commands
and reads/writes the state of the virtual machine on be-
half of the debugger. These reads and writes are trans-
parent to the virtual machine: neither the execution or
replay of the virtual machine is affected (unless the guest
kernel reads state that has been modified by gdb).

Although gdb did not have to be modified to under-
stand the remote serial protocol, it did have to be ex-
tended to implement the new reverse commands. This
provided complete integration of the new reverse com-
mands inside the familiar gdb environment.

5 Performance

In this section, we measure the time and space overhead
of TTVM and the time to execute time-travel operations.
Since debugging is dominated by human think time, our
main goal in this section is only to verify that the over-
head of TTVM is reasonable.

All measurements are carried out on a uniprocessor 3
GHz Pentium 4 with 1 GB of memory and a 120 GB Hi-
tachi Deskstar GXP disk. The host OS is Linux 2.4.18
with the skas extensions for UML and TTVM modifica-
tions. The guest OS is the UML port of Linux 2.4.20 and
includes host drivers for the USB and soundcard devices.
We configure the guest to have 256 MB of memory and
a 5 GB disk, which is stored on a host raw disk partition.
Both host and guest file systems are initialized from a
RedHat 9 distribution. All results represent the average
of at least 5 trials.

We measure three guest workloads: SPECweb99 us-
ing the Apache web server, three successive builds of the
Linux 2.4 kernel (each of the three builds executes make
clean; make dep; make bzImage), and the
PostMark file system benchmark [14].

We first measure the time and space overhead of the
logging needed to support replay. Checkpointing is dis-
abled for this set of measurements. Running these work-

0 200 400 600 800 1000
Checkpoint interval (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 ru
nt

im
e

kernel build
SPECweb
PostMark

Figure 4: The effect of checkpointing on running time.
Running times are normalized to running the workload
without any checkpoints (1027 seconds for kernel build,
1135 seconds for SPECweb, 1114 seconds for Post-
Mark). Overhead is low even for very short checkpoint
intervals of 10 seconds.

loads on TTVM with logging adds 12% time overhead
for SPECweb99, 11% time overhead for kernel build,
and 3% time overhead for PostMark, relative to run-
ning the same workload in UML on standard Linux (with
skas). The space overhead of TTVM needed to support
logging is 85 KB/sec for SPECweb99, 7 KB/sec for ker-
nel build, and 2 KB/sec for PostMark. These time and
space overheads are easily acceptable for debugging.

Replay occurs at approximately the same speed as the
logged run. For the three workloads, TTVM takes 1-
3% longer to replay than it did to log. For workloads
with idle periods, replay can be much faster than logging
because TTVM skips over idle periods during replay.

We next measure the cost of enabling checkpointing.
Figures 4 and 5 show how the time and space overheads
of checkpointing vary with the interval between check-
points. Taking checkpoints adds a small amount of time
overhead and a modest amount of space overhead. Tak-
ing checkpoints every 25 seconds adds less than 4% time
overhead and 2-6 MB/s space overhead. Even taking
checkpoints as frequently as every 10 seconds is feasi-
ble for moderate periods of time, adding 15-27% time
overhead and 4-7 MB/s space overhead.

This low space and time overhead is due to us-
ing undo/redo logs for memory data and logging for
disk data. In particular, logging new versions of guest
disk blocks rather than overwriting the old versions al-
lowed us to perform checkpointing with negligible ex-
tra I/O (a checkpoint contains only the changes to the
guest � host disk block map). Surprisingly, taking check-
points more frequently sometimes improves PostMark’s
running time. The reason for this is how we allocate disk
blocks. A guest disk block is assigned to a new host disk
block only on the first time the guest disk block is writ-

2005 USENIX Annual Technical Conference USENIX Association 9

 



0 200 400 600 800 1000
Checkpoint interval (sec)

0

2

4

6

8

C
he

ck
po

in
t s

pa
ce

 o
ve

rh
ea

d 
(M

B
/s

ec
)

kernel build
SPECweb
PostMark

Figure 5: Space overhead of checkpoints. For long
runs, programmers will cap the maximum space used by
checkpoints by deleting selected checkpoints.

ten after a checkpoint. More frequent checkpoints thus
cause the disk block allocation to resemble a pure log-
ging disk, which improved the spatial locality for writes
for PostMark.

Because checkpointing adds little time overhead, it
is reasonable to perform long debugging runs while
checkpointing relatively often (say, every 25 seconds).
The space overhead of checkpoints over long runs will
be capped typically at a maximum size, which causes
TTVM to delete checkpoints according to its default
exponential-thinning policy [4].

Next we consider the speed of moving forward and
backward through the execution of a run. As described
in Section 3.4, time travel takes two steps: (1) restoring
to the checkpoint prior to the target point and (2) replay-
ing the execution from this checkpoint to the target point.
Figure 6 shows the time to restore a checkpoint as a func-
tion of the distance from the current point to a prior or
future checkpoint. We used a checkpoint interval of 25
seconds and spanned the run with about 40 checkpoints.
Moving to a checkpoint farther away takes more time be-
cause TTVM must examine and restore more undo/redo
logs for memory pages and the disk block map. Recall
that each unique memory page is written at most once,
even when restoring to a point that is many checkpoints
away. Hence the maximum time of a restore operation
approaches the time to restore all memory pages (plus
reading the small undo/redo logs of the disk block maps).
The large jump at a restore distance of 600 seconds for
PostMark is due to restoring enough data to thrash the
host memory. The time for the second step depends on
the distance from the checkpoint reached in step one to
the target point. Since replay on TTVM occurs at ap-
proximately the same speed as the logged run, the aver-
age time of this step for a random point is half the check-
point interval.

0 200 400 600 800 1000
Distance to restore point (sec)

0

5

10

15

20

25

Ti
m

e 
to

 re
st

or
e 

(s
ec

)

kernel build
SPECweb
PostMark

Figure 6: Time to restore to a checkpoint.

6 Experience and lessons learned

In this section, we describe our experience using TTVM
to track down four kernel bugs and show how using re-
verse gdb commands simplified the process. Our expe-
rience provides anecdotal support for the intuition that
reverse debugging is a useful primitive for debugging; it
does not constitute an unbiased user study for quantify-
ing the benefits of reverse debugging. After describing
several anecdotes, we describe the general types of sit-
uations in which reverse debugging is most helpful and
discuss the interactivity of using reverse debugging com-
mands.

6.1 USB device driver
We first describe our experience with a non-deterministic
bug that we encountered on the host OS running on our
desktop computer. Our desktops use Inside Out Net-
works Edgeport USB serial port hubs to communicate
with our test machines, but these were causing our desk-
top computers to crash intermittently (usually overnight).
This bug provided a good test for our system. As a bug in
the current host OS, it provided a realistic context for our
tool. As a non-deterministic bug, it provided a chance to
show the usefulness of time travel. As a bug in the host
device driver, it makes use of our extensions to UML that
enable host device drivers to run (and therefore be de-
bugged) in the guest OS. Last but not least, it was getting
in the way of our work.

We started by enabling in our guest OS the io ti se-
rial port hub driver and usb-uhci chipset driver. These
drivers communicates with their devices via IN/OUT in-
structions, interrupts, and DMA. As expected, the drivers
caused the guest OS to crash intermittently.

We first tried to debug the problem without TTVM.
gdb showed that the crash occurred because the interrupt
service routine called the kernel schedule function.

2005 USENIX Annual Technical Conference USENIX Association10

 



However, it proved difficult to deduce the sequence of
events that caused the interrupt service routine to eventu-
ally call schedule. The call stack showed the call sites
of each active function, but the number and size of these
functions made it difficult to understand the sequence of
events that led to the call to schedule. In addition,
the stack contained only the current value of each vari-
able and it was difficult to determine what had happened
without seeing the prior values of each variable.

The usual approach to gain more information about
the sequence of events that lead to a fault is to run the
program again and step through the execution with a de-
bugger (i.e. cyclic debugging). This approach fails for
this type of bug for several reasons. First, the bug was
intermittent and so would usually not appear on succes-
sive runs. Second, even if the bug did appear on a suc-
ceeding run, it would likely not appear at the same time;
this makes it difficult to zero in on the bug over multiple
runs. Third, bugs in device drivers pose special problems
for traditional debuggers because the device may require
real-time responses that cannot be met by a paused driver.

TTVM avoids these difficulties during debugging be-
cause it does not need to use the device in order to replay
and debug the driver. TTVM logs all interactions with
the device, including I/O, interrupts, and DMA. During
replay, the driver transitions through the same sequence
of states as it went through during logging (i.e. while it
was driving the device), regardless of timing or the state
of the device. As a result, debugging can pause the driver
during replay without altering its execution.

Using TTVM, we were able to step backward through
the execution of the bug and understand quickly the se-
quence of events that led to the call to schedule. Un-
der high load, a buffer in the tty driver became full
during an interrupt service routine invocation, and this
caused the generic usb driver to call down to the io ti
driver, which in turn issued a configuration request to the
device to throttle its communication with the computer.
After issuing this configuration request, the driver waited
for a response, which caused the call to schedule.
This bug appeared in the current release of Linux 2.4 and
2.6. We also discovered a related bug which could cause
the throttling routine to wait on a semaphore, and this
can also cause a call to schedule during an interrupt
service routine invocation. Using TTVM and reverse de-
bugging, we understood the bug quickly and in enough
detail to submit a patch which is being included in the
Linux kernel.

6.2 System call bug

While developing TTVM, we encountered a guest kernel
panic. We first tried to debug this error using traditional
cyclic debugging techniques and standard gdb, i.e. not

using time travel. First, we set a breakpoint in the guest
kernel panic function that is invoked when the kernel
encounters an unrecoverable error. We then re-ran the
virtual machine, hoping for the guest kernel panic to re-
occur. Fortunately, the bug re-occurred and gdb gained
control when a memory exception caused by guest ker-
nel code triggered a panic. The fault occurred after the
guest kernel attempted to execute an instruction at ad-
dress 0. We tried to understand how the kernel reached
address 0 by traversing up the call stack of the guest ker-
nel. However, gdb was unable to traverse up the call
stack because the most recent call frame had been cor-
rupted when the kernel called the “function” at address
0. Since gdb was unable to find the prior function, we
next looked at the data on the stack manually to try to
find a valid return address. We found a few candidate
addresses, but we eventually gave up after disassembling
the guest kernel and searching through various assembly
code segments.

We next used reverse commands to debug the guest
kernel. We attached gdb to the guest-kernel host pro-
cess at the time of the panic. We then performed several
reverse single steps which took us to the point at which
address 0 had been executed. We performed another re-
verse single step and found that this address had been
reached from the system call handler. At this point we
used a number of standard gdb commands to inspect the
state of the virtual machine and determine the cause of
the error. The bug was an incorrect entry in the system
call table, which caused a function call to address 0.

6.3 Kernel race condition bug

We next tried debugging a guest kernel bug that had been
posted on the UML kernel mailing list. The error we
found was triggered by executing the user-mode com-
mand ltrace strace ls, which caused the guest
kernel to panic.

First, we tried to debug the error using traditional
cyclic debugging techniques and standard gdb, i.e. not
using time travel. We set a breakpoint in the kernel
panic function and waited for the error. After the
panic function was called, we traversed up the call
stack to learn more about how the error occurred. Ac-
cording to our initial detective work, the guest kernel
received a debug exception while in guest kernel mode.
However, debug exceptions generated during guest ker-
nel execution get trapped by the debugger prior to deliv-
ery. Since gdb had not received notification of an extra-
neous debugging exception, we deemed a guest kernel-
mode debugging exception unlikely.

By performing additional call stack traversals, we de-
termined that the current execution path originated from
a function responsible for redirecting debugging excep-

2005 USENIX Annual Technical Conference USENIX Association 11

 



tions to guest user-mode processes. This indicated that
the debugging exception occurred in guest user mode,
rather than in guest kernel mode as indicated by the vir-
tual CPU mode variable. Based on that information, we
concluded that either the call stack was corrupted, or the
virtual mode variable was corrupted.

We sought to track changes to the virtual mode vari-
able in two ways, both of which failed. First, we set a
forward watchpoint on the mode variable and re-ran the
test. This failed because the mode variable was modified
legitimately too often to examine each change. Second,
we set a number of conditional breakpoints to try to nar-
row down the time of the corruption. With the condi-
tional breakpoints in place, we re-ran the test case but it
executed without any errors. We then gave up trying to
track down this non-deterministic bug with cyclic debug-
ging and switched to using our reverse debugging tools.

Our first step when using the reverse debugging tools
was to set a reverse watchpoint on the virtual CPU mode
variable. After trapping on the guest kernel panic, we
were taken back to an exception handler where the vari-
able was being changed intentionally. The new value
indicated that the virtual machine was in virtual ker-
nel mode when this exception was delivered. We re-
verse stepped to confirm that this was in fact the case,
and then went forward to examine the subsequent exe-
cution. Since the virtual CPU mode variable is global,
and the nested exception handler did not reset the value
when it returned, the original exception handler (the user
mode debugging exception) incorrectly determined that
the debugging exception occurred while in virtual ker-
nel mode. At this point it was clear that the exception
handler should have included this variable as part of the
context that is restored upon return.

It is instructive to compare our experience fixing this
bug with that of a core Linux developer. Ingo Molnar was
able to fix this bug in “an hour at most” by seeing the
“whole state of the kernel” and because he understood
the code well [20]. Ingo’s expertise apparently enabled
him to deduce (from the state of the stack) the sequence
of events that led to the corruption of the virtual mode
variable. This approach would have been more difficult
had the error manifested after the relevant stack frames
had been popped. In contrast, our approach was to try to
go back to the point at which the virtual mode variable
was corrupted. While our naive approach failed with for-
ward debugging, it was easy with reverse debugging and
would still have worked even if the relevant stack frames
had been popped.

6.4 mremap bug

Finally, we debugged a bug in the mremap sys-
tem call (CVE CAN-2003-0985), which occurs in the

architecture-independent portion of Linux. This bug cor-
rupts a process’s address map when the process calls
mremap with invalid arguments; it manifests later as a
kernel panic when that process exits.

First, we tried to debug the error using traditional
cyclic debugging and standard gdb, i.e. not using time
travel. We attached gdb when the kernel called panic.
We traversed up the call stack and discovered that the
cause of the panic was a corrupted (zero-length) address
map. Unfortunately, the kernel panic occurred long af-
ter the process’s address map was corrupted, and we
were unable to discern the point of the initial corruption.
We thought to re-run the workload with watchpoints set
on the memory locations of the variables denoting the
start and end of the address map. However, these mem-
ory locations changed each run because they were allo-
cated dynamically. Thus, while the bug crashed the sys-
tem each time the program was run, the details of how
the bug manifested were non-deterministic, and this pre-
vented us from using traditional watchpoints. Even if the
bug were completely deterministic, using forward watch-
points would require the programmer to step laboriously
through each resulting trap during the entire run to see if
the values at that trap were correct.

Reverse debugging provided a way to go easily from
the kernel panic to the point at which the corruption ini-
tially occurred. After attaching gdb at the kernel panic,
we set a reverse watchpoint on the memory locations of
the variables denoting the start and end of the address
map. This watchpoint took us to when the guest OS was
executing the mremap that had been passed invalid ar-
guments, and at this point it was obvious that mremap
had failed to validate its arguments properly.

6.5 Lessons learned

We learned four main lessons from our experience about
the types of bugs that TTVM helps debug.

First, we learned that many bugs are too fragile to find
with cyclic debugging. Heisenbugs [13] such as race
conditions thwart cyclic debugging because they mani-
fest only occasionally, depending on transient conditions
such as timing. However, cyclic debugging often fails
even for bugs that manifest each time a program runs,
because the details of how they manifest change from
run to run. Details like the internal state of an OS de-
pend on numerous, hard-to-control variables, such as the
sequence and scheduling order of all processes that have
been run since boot. In the case of the mremap bug, mi-
nor changes to the internal OS state (the address of dy-
namically allocated kernel memory) prevented us from
using watchpoints during cyclic debugging.

In contrast, TTVM’s reverse debugging makes even
the most fragile of bugs perfectly repeatable. TTVM’s

2005 USENIX Annual Technical Conference USENIX Association12

 



deterministic replay ensures that the details of the inter-
nal OS state will remain consistent from run to run and
thus enables the use of debugging commands that depend
on fragile information.

Second, we learned that bugs that take a long time to
trigger highlight the poor match between standard debug-
ging commands and most debugging scenarios. Standard
watchpoints and breakpoints are best suited to go to a fu-
ture point of possible interest. In contrast, programmers
usually want to go to a prior point of possible interest,
because they are following in reverse the chain of events
between the execution of the buggy code and the ensu-
ing detection of that error. Trying to go backward by
re-running the workload with forward watchpoints and
breakpoints is very clumsy without TTVM. If the bug is
fragile, the bug may not manifest (or may not manifest in
the same way) during each run. Even if the bug manifests
in exactly the same way during each run, cyclic debug-
ging forces a programmer to step manually through all
spurious traps since the beginning of the run, or to run
the program numerous times searching manually for the
period of interest.

In contrast, TTVM’s reverse debugging commands
provided exactly the semantics we needed to find each
of the bugs we encountered. For the kernel race bug and
the mremap bug, the point of interest was the last time a
variable changed before the error was detected. For the
system call bug, the point of interest was a few instruc-
tions before the error was detected.

Third, we learned that standard debuggers are difficult
to use for bugs that corrupt the stack or that are detected
after the relevant stack frame is popped. Standard de-
buggers approximate time travel by traversing up the call
stack, but this form of time travel is neither complete nor
reliable. Stack traversal is incomplete because it shows
only the values of variables on the stack and because it
shows those variables only at the time of their function’s
last invocation. For the mremap bug, the code that con-
tained the error was executed during a prior system call
and was not on the stack when the error was detected.
Stack traversal is unreliable because it works only if the
stack is intact. For the system call bug, the stack had been
corrupted by an erroneous function call. Similarly, com-
mon buffer overflow attacks corrupt the stack and render
stack traversal difficult. It is ironic that one of the most
powerful techniques of standard debuggers depends on
the partial correctness of the program being debugged.

In contrast, TTVM provides complete and reliable
time travel. It is complete in that it can show the state
of any variable at any time in the past. It is reliable in
that it works without depending on the correctness of the
program being debugged.

Finally, we learned that bugs in device drivers are par-
ticularly hard to solve with cyclic debugging. Device

driver bugs are often non-deterministic because they de-
pend on interrupts and device inputs. In addition, de-
vices may require real-time responses that cannot be met
by a paused driver. In contrast, TTVM allows one to re-
play device drivers deterministically, and TTVM’s replay
works without interacting with the device.

6.6 Interactivity of reverse debugging

To debug the bugs described in this section we triggered
the error while logging, then replayed the virtual ma-
chine to diagnose the error. When replaying, we set
the checkpoint interval to ten seconds. This checkpoint
interval added reasonable runtime overhead for debug-
ging (in fact, it added less overhead than some forward
debugging commands, such as conditional breakpoints)
and was short enough to support interactive performance
for reverse commands.

We found the reverse commands to be quite interac-
tive. Usually we used the reverse commands to step back
a couple instructions or to go back to a recent break-
point within the current checkpoint interval. This caused
most of our checkpoint state to remain in the host file
cache, which further sped up subsequent reverse com-
mands. Restoring to the nearest checkpoint took under
1 second; replaying to the point of interest took five sec-
onds on average (given the ten second checkpoint inter-
val). Taking a reverse single step took about 12 seconds
on average; this includes the time for both passes (Figure
3), i.e. restoring the checkpoint twice and replaying the
remainder of the checkpoint interval twice. Overall, we
found the speed of our reverse debugging commands fast
enough to support interactive usage comfortably.

7 Related work

Our work draws on techniques from several areas, in-
cluding prior work on reverse execution of determinis-
tic programs, replay of non-deterministic programs, and
virtual-machine replay. Our unique contribution is com-
bining these techniques in a way that enables powerful
debugging capabilities that have not been available pre-
viously for systems (such as operating systems) that have
numerous sources of non-determinism, that run for long
periods of time, or that interact with hardware devices.

Re-executing prior computation through checkpoint
and logging has been discussed in the programming com-
munity for many years [30, 10, 1, 4, 6, 24]. However, no
prior reverse debugger would work for operating systems
or for a user-level virtual machine such as User-Mode
Linux. The primary limitation of prior systems is they
are unable to replay programs with non-deterministic ef-
fects such as interrupts and thread scheduling [10, 4, 1,

2005 USENIX Annual Technical Conference USENIX Association 13

 



6]. User-Mode Linux simulates interrupts and preemp-
tions with asynchronous signals, and prior reverse de-
buggers are not able to replay such events. In addition,
most reverse debuggers implement time travel by logging
all changes to variables [30, 1, 21, 6], and this approach
logs too much data when debugging long-running sys-
tems such as an OS. Finally, some systems work at the
language level [27], and this prevents them from work-
ing with operating systems in a different language or with
application binaries.

Researchers have worked to replay non-deterministic
programs through various approaches. The events of
different threads can be replayed at different levels, in-
cluding logging accesses to shared objects [16], logging
the scheduling order of multi-threaded programs on a
uniprocessor [22], or logging physical memory accesses
in hardware [2]. Other researchers have worked to opti-
mize the amount of data logged [21].

Virtual-machine replay has been used for non-
debugging purposes. Hypervisor used virtual-machine
replay to synchronize the state of a backup machine to
provide fault tolerance [5]. ReVirt used virtual-machine
replay to enable detailed intrusion analysis [9]. Our
work applies virtual-machine replay to achieve a new
capability, which is reverse debugging of operating sys-
tems. TTVM also supports additional features over prior
virtual-machine replay systems. TTVM supports the
ability to run, log, and replay real device drivers in the
guest OS, whereas prior virtual-machine replay systems
ran only para-virtualized device drivers in the guest OS.
In addition, TTVM can travel quickly forward and back-
ward in time through its use of checkpoints and undo
and redo logs, whereas ReVirt supported only a single
checkpoint of a powered-off virtual machine and Hyper-
visor did not need to support time travel at all (it only
supported replay within an epoch).

Another approach for providing time travel is to use a
complete machine simulator, such as Simics [18]. Simics
supports deterministic replay for operating systems and
applications and has an interface to a debugger. How-
ever, Simics is drastically slower than TTVM, and this
makes debugging long runs impractical. On a 750 MHz
Ultrasparc III, Simics executes 2-6 million x86 instruc-
tions per second (several hundred times slower than na-
tive) [18], whereas virtual machines typically incur a
slowdown of less than 2x.

8 Conclusions and future work

We have described the design and implementation of a
time-traveling virtual machine and shown how to use
TTVM to add powerful capabilities for debugging op-
erating systems. We integrated TTVM with a general-

purpose debugger, implementing commands such as re-
verse breakpoint, reverse watchpoint, and reverse step.

TTVM added reasonable overhead in the context of
debugging. The logging needed to support time travel
for three OS-intensive workloads added 3-12% in run-
ning time and 2-85 KB/sec in log space. Taking check-
points every minute added less than 4% time overhead
and 1-5 MB/sec space overhead. Taking checkpoints ev-
ery 10 second to prepare for debugging a portion of a run
added 16-33% overhead and enabled reverse debugging
commands to complete in about 12 seconds.

We used TTVM and our new reverse debugging com-
mands to fix four OS bugs that were difficult to find with
standard debugging tools. We found the reverse debug-
ging commands to be intuitive to understand and fast and
easy to use. Reverse debugging proved especially helpful
in finding bugs that were fragile due to non-determinism,
bugs in device drivers, bugs that required long runs to
trigger, bugs that corrupted the stack, and bugs that were
detected after the relevant stack frame was popped.

Possible future work includes exploring non-
traditional debugging operations that are enabled by
time travel and deterministic replay. For example, one
could measure the effects of a programmer-induced
change by forking the execution and comparing the
results after the change with the results of the original
run.

9 Acknowledgments

Our shepherd, Steve Gribble, and the anonymous re-
views provided feedback that helped improve this pa-
per. This research was supported in part by ARDA grant
NBCHC030104, National Science Foundation grants
CCR-0098229 and CCR-0219085, and by Intel Corpo-
ration. Samuel King was supported in part by a National
Defense Science and Engineering Graduate Fellowship.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An
Execution-Backtracking Approach to Debugging. IEEE
Software, 8(3), May 1991.

[2] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Re-
play of Multiprocessor Programs. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debug-
ging, May 1991.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In Proceedings of the 2003 Sym-
posium on Operating Systems Principles, October 2003.

[4] B. Boothe. Efficient algorithms for bidirectional debug-
ging. In Proceedings of the 2000 Conference on Pro-
gramming Language Design and Implementation (PLDI),
pages 299–310, June 2000.

2005 USENIX Annual Technical Conference USENIX Association14

 



[5] T. C. Bressoud and F. B. Schneider. Hypervisor-Based
Fault-Tolerance. In Proceedings of the 1995 Symposium
on Operating Systems Principles, pages 1–11, December
1995.

[6] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung. Reversible
Debugging Using Program Instrumentation. IEEE Trans-
actions on Software Engineering, 27(8):715–727, August
2001.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An Empirical Study of Operating Systems Errors. In Pro-
ceedings of the 2001 Symposium on Operating Systems
Principles, pages 73–88, October 2001.

[8] J. Dike. A user-mode port of the Linux kernel. In Pro-
ceedings of the 2000 Linux Showcase and Conference,
October 2000.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and
P. M. Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Proceedings of
the 2002 Symposium on Operating Systems Design and
Implementation (OSDI), pages 211–224, December 2002.

[10] S. I. Feldman and C. B. Brown. IGOR: a system for pro-
gram debugging via reversible execution. In Proceedings
of the 1988 ACM SIGPLAN/SIGOPS Workshop on Paral-
lel and Distributed Debugging, pages 112–123, Novem-
ber 1988.

[11] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Reconstructing I/O. Technical Re-
port UCAM-CL-TR-596, University of Cambridge Com-
puter Laboratory, August 2004.

[12] R. P. Goldberg. Survey of Virtual Machine Research.
IEEE Computer, pages 34–45, June 1974.

[13] J. Gray. Why do computers stop and what can be done
about it? In Proceedings of the 1986 Symposium on Re-
liability in Distributed Software and Database Systems,
pages 3–12, January 1986.

[14] J. Katcher. PostMark: A New File System Benchmark.
Technical Report TR3022, Network Appliance, October
1997.

[15] S. T. King, G. W. Dunlap, and P. M. Chen. Operating Sys-
tem Support for Virtual Machines. In Proceedings of the
2003 USENIX Technical Conference, pages 71–84, June
2003.

[16] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Par-
allel Programs with Instant Replay. IEEE Transactions on
Computers, pages 471–482, April 1987.

[17] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodi-
fied Device Driver Reuse and Improved System Depend-
ability via Virtual Machines. In Proceedings of the 2004
Symposium on Operating Systems Design and Implemen-
tation (OSDI), December 2004.

[18] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
and B. Werner. Simics: A Full System Simulation Plat-
form. IEEE Computer, 35(2):50–58, February 2002.

[19] J. M. Mellor-Crummey and T. J. LeBlanc. A Software
Instruction Counter. In Proceedings of the 1989 Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 78–86,
April 1989.

[20] I. Molnar, February 2005. personal communication.

[21] R. H. B. Netzer and M. H. Weaver. Optimal Tracing and
Incremental Reexecution for Debugging Long-Running
Programs. In Proceedings of the 1994 Conference on Pro-
gramming Language Design and Implementation, June
1994.

[22] M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. In Pro-
ceedings of the 1996 Conference on Programming Lan-
guage Design and Implementation, pages 258–266, May
1996.

[23] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the Migration of
Virtual Computers. In Proceedings of the 2002 Sympo-
sium on Operating Systems Design and Implementation,
December 2002.

[24] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou.
Flashback: A light-weight rollback and deterministic re-
play extension for software debugging. In Proceedings of
the 2004 USENIX Technical Conference, June 2004.

[25] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A.
Soules, and G. R. Ganger. Self-securing storage: Pro-
tecting data in compromised systems. In Proceedings of
the 2000 Symposium on Operating Systems Design and
Implementation (OSDI), October 2000.

[26] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Vir-
tualizing I/O Devices on VMware Workstation’s Hosted
Virtual Machine Monitor. In Proceedings of the 2001
USENIX Technical Conference, June 2001.

[27] A. Tolmach and A. W. Appel. A Debugger for Standard
ML. Journal of Functional Programming, 5(2):155–200,
April 1995.

[28] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. In Proceedings
of the 2002 Symposium on Operating Systems Design and
Implementation (OSDI), December 2002.

[29] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data
Recorder” for Enabling Full-system Multiprocessor De-
terministic Replay. In Proceedings of the 2003 Interna-
tional Symposium on Computer Architecture, June 2003.

[30] M. V. Zelkowitz. Reversible execution. Communications
of the ACM, 16(9):566, September 1973.

2005 USENIX Annual Technical Conference USENIX Association 15

 




