arXiv:1005.3450v1 [cs.0S] 19 May 2010

Efficient System-Enforced Deterministic Parallelism
UNPUBLI SHED DRAFT

Amittai Aviram, Shu-Chun Weng, Sen Hu, Bryan Ford
Yale University

Abstract minishing the technique’s effectiveness. A heisenbug
or intrusion that manifests “in the field” with logging
disabled may not reappear during subsequent logged
attempts to reproduce it—especially with malwale-
signedto evade analysis by detecting the timing impact
of logging or virtualization([30].

Deterministic execution offers many benefits for debug-
ging, fault tolerance, and security. Runnioarallel pro-
grams deterministically is usually difficult and costly,
however—especially if we desirsystem-enforcedle-
terminism, ensuring precise repeatability of arbitrarily i))
buggy or malicious software. Determinator is a novel Motivated by its many uses, we would like system-
operating system that enforces determinism on both muienforced determinism to be available fmrmal-casex-
tithreaded and multi-process computations. Determi£cution of parallel applications. To test this goal's feasi
nator's kernel provides only single-threaded, “sharedPility, we built Determinator an operating system that
nothing” address spaces interacting via deterministi¢’0t only executes individual processes deterministically
synchronization. An untrusted user-level runtime useS in deterministic user-level scheduling[[8, 9], but can
distributed computing technigues to emulate familiar ab-enforce determinism on hierarchies of interacting pro-
stractions such as Unix processes, file systems, ang€Sses. Rerunning a multi-process Determinator compu-
shared memory multithreading. The system runs parallei@tion with the same inputs yields exactly the same out-
applications deterministically both on multicore PCs andPUts, without internal event logging. Determinator treats
across nodes in a cluster. Coarse-grained parallel bencfll Potential nondeterministic inputs to a computation—
marks perform and scale comparably to—sometimes befncluding all timing information—as “privileged infor-

ter than—conventional systems, though determinism ignation,” which normal applications cannot obtain except

costly for fine-grained parallel applications. via controlled channels. We treat deterministic execu-
tion as not just a debugging tool but a security principle:
1 Introduction if malware infects an unprivileged Determinator applica-

Itis often useful to run softwargeterministically ensur- tion, it should be unable to evade replay-based analysis.

ing a given program and input always yields exactly the System-enforced determinism is challenging because
same result. Deterministic execution makes bugs reprgcurrent programming environments and APIs are riddled
ducible, and is required for “record-and-replay” debug—With timing dependencies. Most shared-memory parallel
ging [28/40]. Fault tolerancE [15.18]49] and accountabil-code uses mutual exclusion primitives: even when used
ity mechanism<[33] rely on execution being determinis-correctly, timing determines the application-visibleerd
tic and bit-for-bit identical across state replicas. Iatru in which competing threads acquire a mutex. Concur-
sion analysis[23,36] and timing channel contfdl [4] canfeéncy makes names allocated from shared namespaces,
further benefit fronsystem-enforced determiniswhere ~ such as pointers returned bl | oc() and file descrip-
the system prevents application code from depending ofPrs returned bypen() , timing-dependent. Synchro-
execution timing or other unintended inputs even if theNizing operations like semaphores, message queues, and
code is maliciously designed to do so. wai t () nondeterministically return “the first” event,
Multicore processors and ubiquitous parallelism makemessage, or terminated process available. Even single-
programming environments increasingly nondeterminisfhreaded processes are nondeterministic when run in
tic, however. Nondeterminism makes software harder tg*@rallel, due to their interleaved accesses to shared re-
develop and debu@ [43,44]. Race detectors held [27, 45p0urces. A paralleffake - j ' command often presents
but even properly synchronized programs may haved chaotic mix of its child tasks’ outputs, for example, and
higher-level heisenbugsl[3]. The cost of logging and re-Missing dependencies can yield “makefile heisenbugs”
playing the internal nondeterministic events in parallelthat manifest only under parallel execution.
software [[20, 24] can be orders of magnitude higher than Addressing these challenges in Determinator led us to
that of logging only a computation’s external inputs, es-the insight that timing dependencies commonly fall into
pecially for system-enforced replay [23]24]. This costa few categories: unintended interactions via shared state
usually precludes logging “normal-case” execution, di-or namespaces; synchronization abstractions with share-

http://arxiv.org/abs/1005.3450v1

able endpoints; true dependencies on “real-world” timejidentify five OS design principles for system-enforced
and application-level scheduling. Determinator avoidsdeterminism, and illustrate their application in a novel
physically shared state by isolating concurrent actigitie kernel API. Second, we demonstrate ways to build famil-
during normal execution, allowing interaction only at ex- iar abstractions such as file systems and shared memory
plicit synchronization points. The kernel's API uses lo- atop a kernel API restricted to deterministic primitives.
cal, application-chosen names in place of shared, OSthird, we present the first system that can enforce deter-
managed namespaces. Synchronization primitives opministic execution on multi-process computations with
erate “one-to-one,” betweespecificthreads, preventing performance acceptable for “normal-case” use, at least
threads from “racing” to an operation. Determinator for some (coarse-grained) parallel applications.
treats access to real-world time as I/O, controlling it as Sectior 2 describes Determinator’s kernel design prin-
with other devices such as disk or network. Finally, De-ciples and API, then Sectidn 3 details its user-space ap-
terminator requires scheduling to be separated from application runtime. Sectio]4 examines our prototype im-
plication logic and handled by the system, or else emuplementation, and Sectidn 5 evaluates it informally and
lated using a deterministic, virtual notion of “time.” experimentally. Finally, Sectidd 6 outlines related work,
Since we wish to derive basic principles for system-and Sectiofi7 concludes.
enforced determinism, Determinator currently makes no .
attempt at compatibility with existing operating systems,2 T he Determinator Kernel

and provides limited compatibility with existing APIs. Thijs section describes Determinator’s underlying design
The kernel's low-level API offers only one user-visible principles, then its low-level execution model and kernel
abstractionspacesrepresenting execution state and vir- AP|. We do not expect normal applications to use the ker-
tual memory, and only three system calls by whichne| API directly, but rather the higher-level abstractions
spaces synchronize and communicate. The API's minthe user-level runtime provides, as described in the next
imality facilitates both experimentation and reasoningsection. We make no claim that this API is the “right” de-
about its determinism. Despites this simplicity, our un-sign for a determinism-enforcing kernel, but merely use

trusted, user-level runtime builds atop the kernel to pro-t to explore design challenges and strategies.
vide familiar programming abstractions. The runtime

uses file replication and versionirig [47] to offer appli- 2.1 Kernel API Design Principles

cations a logically shared file system via standard APIsjye first briefly outline the principles we developed
distributed shared memoryi[2/17] to create multithreadegn designing Determinator, which address the common
processes logically sharing an address space; and detefyyrces of timing dependencies we are aware of. We
ministic schedulingl[€.19, 22] to support pthreads-stylefyther discuss the motivations and implications of these
synchronization. Since the kernel enforces determinismgyrinciples below as we detail the kernel API. We make
bugs or vulnerabilities in this runtime cannot compro-ng claim that this is a complete or conclusive list, but at
mise the determinism guarantee. least for Determinator these principles prouficiento
Experiments with common parallel benchmarks sug-offer a deterministic execution guarantee, for which we
gest that Determinator can run coarse-grained paralpriefly sketch formal arguments later in Section 2.4.
lel applications deterministically with both performance . -
and scalability comparable to nondeterministic environ-1- Isolate the Wor,"'“g state_ of concurrept aCt',V't'eS
ments. Determinism incurs a high cost on fine-graineobewveen synchronization points. Determinator's ker-

parallel applications, however, due to Determinator’s usd'€! AP! dwectly_prowdes no sha_red state abstractions,
of virtual memory to isolate threads. For “embarrass-SUch as global_ﬂ!e_ systems or _/vrl_teab_le shared memory.
ingly parallel” applications requiring little inter-thae Concurrent activities operate within private “sandbadxes,

communication. Determinator can distribute the Com_interacting only at deterministically defined synchroniza

putation across nodes in a cluster mostly transparentlj/'On points, eliminating timing dependencies due to inter-

to the application, maintaining usable performance an eaved access to shared state.

scalability. The current prototype is merely a proof-2. Use local, application-chosen names instead of

of-concept and has many limitations, such as a restricglobal, system-allocated names.APIs that assign

tive space hierarchy, limited file system size, no per-names from a shared namespace introduce nondetermin-

sistent storage, and inefficient cross-node communicasm even when the named objects are unshared: execu-

tion. Also, our “clean-slate” approach is motivated by tion timing affects the pointers returned bml | oc()

research goals; a more realistic approach to deployingr mmap() or the file numbers returned bypen()

system-enforced determinism would be to add a deterin multithreaded Unix processes, and the process IDs

ministic “sandbox”[19, 32] to a conventional OS. returned byfork() or the file names returned by
This paper makes three main contributions. First, werkt enp() in single-threaded processes. To avoid these

—

t | Option | Description

H Grandchild Space h H Grandchild Space h Ge

! ! v Regs | PUT/GET child’s register state.
v
v

Synchronization

L] cnild Space H L] cnild Space

Copy | Copy memory to/from child.

Zero | Zero-fill virtual memory range.
Snap | Snapshot child’s virtual memory.
Start | Start child space executing.

v Merge | Merge child’'s changes into parent.
v Perm | Set memory access permissions.
v Tree | Copy (grand)child subtree.

Synchronization

,,,,,, Working Memo
Registers""'“"—‘ I Rt Space ﬂ Snapihot ’
Device I/Ot

YR SN N NN Y

Determinator Kernel

Table 2: Options/arguments to the Put and Get calls.
Figure 1: The kernel’s hierarchy spaceseach contain-

ing private register and virtual memory state. sible within that space. A Determinator space is analo-
gous to a single-threaded Unix process, with several im-
sources of nondeterminism, Determinator’s kernel APIportant differences; we use the term “space” to highlight
uses onlylocal names chosen by the application: user-these differences and avoid confusion with the “process”
level code decides where to allocate memory and whaind “thread” abstractions Determinator emulates at user
process IDs to assign children. This principle ensuresevel, as described later in Sectign 3.
that naming a resource reveals no shared state informa- As in a nested process modél [29], a Determinator
tion other than what the application itself provided. space cannot outlive its parent, and a space can directly
interactonly with its immediate parent and children via

chronization operation, and the point in each par- three system calls describgd belovv_. Following pr_inci—
ticipant’'s execution at which synchronization occurs. ~ P!e 1 above, the kernel provides no file systems, writable

The kernel API allows a thread or process to synchro-Shared memory, or other shared state abstractions.

nize with aparticular target, like Unix processes use Following principle 4, only the distinguishetbot

wai t pi d() to wait for a specific child. The API does spacehas direct access to nondeterministic 1/0 devices
not support synchronizing with “any” or “the first avail- including clocks; other spaces can access I/O devices
able” target as in Unix'srai t (), or interrupting an- Only indirectly via parent/child interactions, or via I/O
other thread at a timing-dependent point in its executionPrivileges delegated by the root space. A parent space
as with Unix signals. Nondeterministic synchronizationc@n thus control all nondeterministic inputs into any un-
APIs may be emulated deterministically, if needed forPrivileged space subtree, e.g., logging inputs for future

compatibility, as described in Sectibn.5. replay. (This space hierarchy also creates a performance
bottleneck for I/O-bound applications, a limitation of the

4. Treat access to explicit time sources as l/0.User cyrrent design we intend to address in future work.)
code has no direct access to clocks counting either real

time, as inget ti meof day(), or nondeterministic 2.3 System Call API
“virtual time” measures, as iget r usage(). Deter-

3. User code determines the participants in any syn-

Determinator spaces interact only as a result of proces-
aéor traps and the kernel's three system calls—Put, Get,
* %nd Ret, summarized in Talile 1. Put and Get take sev-

eral optional arguments, summarized in TdHle 2. Most
5. Separate application logic from scheduling. De- options can be combined: e.g., in one Put call a space
terministic applications cannot make timing-dependentan initialize a child’s registers, copy a range of the par-
internal scheduling or load-balancing decisions, as toent’s virtual memory into the child, set page permissions
day’s applications often do using thread pools or workon the destination range, save a complete snapshot of the
queues. Applications magxposearbitrary parallelism child’s address space, and start the child executing.
and provide scheduling hints—in principle they could As per principle 2 above, each space has a private
even download extensions into the kernel to customizenamespace of child spaces, which user-level code man-
scheduling [[10]—provided the kernel prevents customages. A space specifies a child number to Get or Put, and
scheduling policies from affecting computed results. the kernel creates that child if it doesn’t already exist, be

fore performing the requested operations. If the specified

2.2 Spaces child did exist and was still executing at the time of the
Determinator executes application code within a hierarPut/Get call, the kernel blocks the parent’s execution un-
chy ofspacesillustrated in Figuréll. Each space consiststil the child stops due to a Ret system call or a processor
of CPU register state for a single control flow, and privatetrap. These “rendezvous” semantics ensure that spaces
virtual memory containing code and data directly accessynchronize only at well-defined points in both spaces’

with other devices such as network, disk, and display.

Call | Description

Put | Copy register state and/or a virtual memory range into al@dphce, and optionally start the child executing.
Get | Copy register state, a virtual memory range, and/or chasiges the last snapshot out of a child space.

Ret | Stop and wait for parent to issue a Get or Put.

Table 1: System calls comprising Determinator’s kernel.API

execution, as required by principle 3. [chiid (0,0 H [child (0,1) h [child (1,0 H [child (1,1) h

The Copy option logically copies a range of virtual \ ‘/ ‘ !
memory between the invoking space and the specified 7 Sl - gi
child. The kernel uses copy-on-write to optimize large - _ Cross-Node

. .) . t(home) Space Migration

copies and avoid physically copying read-only pages.

Merge is available only on Get calls. A Merge is like a Q
Copy, except the kernel copies only bytes thiffer be-
tween the child’s current and reference snapshots into the Determinator Kernel [+~ Determinator Kernel
parent space, leaving other bytes in the parent untouched. Cluster Node 0 Cluster Node 1
The kernel also detects conflicts: if a byte changed in
boththe child’s and parent's spaces since the snapshof;igure 2: A spaces migrating among two nodes and start-
the kernel generates an exception, treating a conflict a'd child spaces on each node.
a programming error like an illegal memory access or
divide-by-zero. Determinator’s user-level runtime usesgraph of possible execution traces of a space hierarchy.
Merge to give multithreaded processes the illusion ofEach node represents a synchronization point in a possi-
shared memory, as described later in Se¢fioh 3.4. In prinble execution history of one space, vertical edges repre-
ciple, user-level code could implement Merge itself, butsent local computation sequences in one space between
the kernel's direct access to page tables makes it easy feynchronization points, and horizontal edges represent
the kernel to implement Merge efficiently. pairwise interactions where a parent space’s Get or Put

Finally, the Ret system call stops the calling space, resynchronizes with a child’s Ret. From this graph we
turning control to the space’s parent. Exceptions such asonstruct a “happens-before” partial order over all syn-
divide-by-zero also cause a Ret, providing the parent ahronization points in all possible executions. At each
status code indicating why the child stopped. synchronization point, assuming all prior (on the partial

To facilitate debugging and prevent untrusted childrenorder) computation sequences and synchronization inter-
from looping forever, a parent can start a child with anactions yield only one possible result for a given set of
instruction limit, forcing control back to the parent af- inputs, then the same is true after that synchronization
ter the child and its descendants collectively execute thigoint: each synchronization point in a parent space inter-
many instructions. Counting instructions instead of “realacts with only one corresponding point in a specific child,
time” preserves determinism, while enabling spaces t@nd vice versa, and synchronization effects such as mem-
“quantize” a child’s execution to implement scheduling ory changes depend only on the two spaces’ states prior
schemes deterministically at user leve[[8, 22]. to synchronization. By induction on the partial order, the

entire execution history is therefore deterministic.

2.4 Reasoning about Determinism

Can we be certain the kernel API above indeed guaranz'5 Distribution via Space Migration

tees that space subtrees execute deterministically despithe kernel allows space hierarchies to span not only
parallelism? While a detailed proof is out of scope, wemultiple CPUs in a multiprocessor/multicore system, but
briefly sketch two formal arguments for this guarantee. also multiple nodes in a cluster, mostly transparently
The first argument leverages an existing formal paralto application code. While distribution is semantically
lel computing model: a Kahn process netwark![38] is atransparent to applications, we say “mostly transpar-
network of single-threaded processes, which run sequerently” because an application may have to be designed
tial code deterministically and interact only via blockjng with distribution in mind to achieve acceptable perfor-
one-to-one message channels. Under these restrictiomsance. As with other aspects of the kernel's design,
a Kahn network behaves deterministically. Determina-we make no pretense that this is the “right” approach to
tor's Get, Put, and Ret calls are implementable in termsross-node distribution, but merely one way to extend a
of messages on one-to-one channels, making Determinaeterministic execution model across a cluster.
tor’s space hierarchy formally equivalent to a Kahn pro- Distribution support adds no new system calls or op-
cess network, thereby ensuring its determinism. tions to the APl above. Instead, the Determinator kernel
For a more “first-principles” argument, consider a interprets the higher-order bits in each process’s child

number namespace as a “node number” field. Wheisters, and start the child. The difficulty arises from
a space invokes Put or Get, the kernel first logicallyUnix’s global process ID (PID) hamespace, a source of
migrates the calling space’s state and control flow tonondeterminism violating our design principle 2 (Sec-
the node whose number the user specifies as part of itson[2.1). Since most applications use PIDs returned by
child number argument, before creating and/or interactf or k() merely as an opaque argument to a subsequent
ing with a child on that node specified in the remainingwai t pi d() , our runtime makes PIDs local to each pro-
child number bits. Figuriel2 illustrates a space migratingcess: one process’s PIDs are unrelated to, and may nu-
between two nodes and managing child spaces on eachmerically conflict with, PIDs in other processes. This
Once created, a space hakane nodgto which the change breaks Unix applications that pass PIDs among
space migrates when interacting with its parent on a Reprocesses, and means that commands [ils¢ must be
or trap. Nodes are numbered so that “node zero” inbuilt into shells for the same reason thetl’ already is.
any space’s child namespace always refers to the spacefis simple approach works for compute-oriented appli-
home node. If a space uses only the low bits in itscations following the typical fork/wait pattern, however.
child numbers and leaves the node number field zero, the Sincef or k() returns a PID chosen by the system,
space’s children all have the same home as the parent. while our kernel API requires user code to manage child
When the kernel migrates a space, it first transfers tawumbers, our user-level runtime maintains a “free list” of
the receiving kernel only the space’s register state anghild spaces and reserves one during dawhk () . To
address space summary information. Next, the receivingmulate Unix process semantics more closely, a central
kernel requests the space’s memory pages on demand sgace such as the root space could manage a global PID
the space accesses them on the new node. Each nodeamespace, at the cost of requiring inter-space commu-
kernel avoids redundant cross-node page copying in theication during operations suchfsr k() .

common case when a space repeatedly migrates amo) . . .

several nodes—e.g., when a space starts children on ea%%ec' A user-level |mplementat|$)n of Unuex_ec() .
of several nodes, then returns later to collect their result Mmust construct the new program's memory Image, in-
For pages that the migrating space only reads and nevé?nded to replace th,e old Jprogram, while still execut-
the old program’s runtime library code. Our run-

writes, such as program code, each kernel reuses cacht loads th into a.* 4" child
copies of these pages whenever the space returns to that'© '0ads the New program info a Teserved: child space

node. The kernel currently performs no prefetching Ornre]_\llg,r us?_d byt or k() 't thetﬂ ;:alllsthGet to copy thatt'
other adaptive optimizations. Its rudimentary messaginaﬁ{1 lld’s entire memory atop that of the (running) parent:

protocol runs directly atop Ethernet, and does not suppo Is Get _thus re_turns into the NEw program. To ensufe
TCP/IP for Internet-wide distribution. that the instruction address following the old program’s

Get is a valid place to start the new program, the run-
time places this Get in a small “trampoline” code frag-
ment mapped at the same location in the old and new
The kernel API described above eliminates many conveprograms. The runtime also carries over some Unix pro-
niences to which developers and users are accustomegess state, such as the the PID namespace and file system
Can we reproduce them under the constraint of stricktate described later, from the old to the new program.
determinism? We find that many familiar abstractions o o .
remain feasible, although some semantically nondetertVait: When an application callsai t pi d() to wait
ministic abstractions may be costly to emulate preciselyfor & specific child, the runtime calls Get to synchronize
This section details the user-level runtime infrastruetur With the child’s Ret and obtain the child's exit status.
we developed to emulate traditional Unix processes, fildThe child may return to the parent before it wishes to
systems, threads, and synchronization under Determind€'minate, in order to make 1/O requests as described be-

3 Emulating High-Level Abstractions

tor. low; in this case, the parent’s runtime services the I/O
request and resumes thai t pi d() transparently to
3.1 Processes and fork/exec/wait the application.)

We make no attempt to replicate Unix process se- Unix’s wai t () is more challenging, as it violates

mantics exactly, but would like to emulate traditional pr|nc_|ple 3 by waiting ,forany(l.e.,_ the first”) child to
for k/exec/wai t APIs enough to support common terminate. Our kernel’'s API provides no system call to

uses in scriptable shells, build tools, and muIti—processWalt for any child,” and can't (for unprivileged spaces)

“ o m o - ithout violating its determinism guarantee. Instead, our
batch processing” applications such as compilers. with . . . ’
P g'app P runtime waits for the child that was forked earliest whose

Fork: Implementing a basic UniX or k() requires status was not yet collected. This behavior does not af-
only one Put system call, to copy the parent’s entirefect applications that fork one or more children and then
memory state into a child space, set up the child’s regwait for all of them to complete, but affects two com-

(a) ‘make -3j' (b) ‘make -j' Child Child
on Unix on Determinator Process | Process
CcPU1| Task 1 [Task 1 - -
File System
CPU 2 ‘ Task 2 ‘ ‘ Task 3 ‘ Task 2 ‘ ‘ Task 3 Synchronization
Time allwait ()s return - Time all wait ()s return v Root \' Flle e
Process | System |
(¢) 'make -j2'on Unix (d) 'make -j2'on Determinator
(nondeterministic) (deterministic) Job Inputs? ¢J°b Outputs
CPU1 \ Task 1 ‘ Task 1 Determinator Kernel
CPU2[Task2 || Task3 | Task2 | Task 3
-
Time wait()retums = Time wait() returns Figure 4: Each process’s user-level runtime maintains an

individual replica of a logically shared file system, us-
Figure 3: Example paralleteke scheduling scenarios ing file versioning to reconcile replicas at synchroniza-
under Unix versus Determinator: (a) and (b) with unlim- tion points.
ited parallelism (no user-level scheduling); (c) and (d)

with a “2-worker” quota imposed at user level. . . . o
Since our current focus is on emulating familiar ab-

_ o _ _ stractions and not on developing storage systems, Deter-
mon uses ofwai t () . First, interactive Unix shells use minator’s file system currently provides no persistence:
wai t () toreportwhen background processes completeit effectively serves only as a temporary file system.
thus, an interactive shell running under Determinator re- \wile many distributed file system designs may be ap-
quires special “nondeterminism privileges” to provide pjicable, our runtime uses replication with weak consis-
this functionality (and related functions such as Intérac+ency [53[55]. Our runtime maintains a complete file
tive job control). Second, our runtime’s behavior may system replica in the address space of each process it
adversely affect the performance of programs that useyanages, as shown in Figute 4. When a process cre-
wai t () to implement dynamic scheduling or load bal- gies 5 child viaf or k() , the child inherits a copy of

ancing i_” user space, which viol_ates pri.nciple.5.. _ the parent’s file system in addition to the parent’'s open
Consider a parallgtake run with or without limiting file descriptors. Individuabpen/cl ose/r ead/wri t e
the number of concurrent children. A plaimeke -j’, operations in a process use only that process’s file sys-

allowing unlimited children, leaves scheduling decisionstem replica, so different processes’ replicas may diverge
to the system. Under Unix or Determinator, the kernel'sas they modify files concurrently. When a child termi-
scheduler dynamically assigns tasks to available CPUszates and its parent collects its state wii t (), the
as illustrated in Figuré]3 (a) and (b). If the user runsparent's runtime copies the child’s file system image into
‘make -j 2', however, themake initially starts only g scratch area in the parent space and uses file version-
tasks 1 and 2, then waits for one of them to complete being [47] to propagate the child’s changes into the parent.
fore starting task 3. Under Unixai t () returns when If a shell or parallehake forks several compiler pro-
the short task 2 completes, enablimgke to starttask 3 agges in parallel, for example, each child writes its out-
immediately as in (c). On Determinator, however, thep ;¢ file to its own file system replica, then the par-
wai t () returns only when (deterministically chosen) gns runtime merges the resulting files into the par-
task 1 completes, resulting in a non-optimal schedule (d)en¢s file system as the parent collects each child's exit
determinism prevents the runtime from learning whichgiaius. This copying and reconciliation is not as ineffi-
of tasks 1 and 2 completed first. This example illustrateg;jent as it may appear, due to the kernel’s copy-on-write
the_importance_of_separating scheduling from applicatiorbptimizations. Replicating a file system image among
logic, as per principle S. many spaces copies no physical pages until user-level
. code modifies them, so all processes’ copies of identical
3.2 A Shared File System files consume only one set of pages.
Unix’s globally shared file system provides a convenient As in any weakly-consistent file system, processes
namespace and repository for staging program inputspay causeonflictsif they perform unsynchronized, con-
storing outputs, and holding intermediate results such asurrent writes to the same file. When our runtime detects
temporary files. Since our kernel permits no physicala conflict, it simply discards one copy and sets a con-
state sharing, user-level code must emulate shared stafiéct flag on the file; subsequent attemptofoen() the
abstractions. Determinator’s “shared-nothing” space hifile result in errors. This behavior is intended for batch
erarchy is similar to a distributed system consisting onlycompute applications for which conflicts indicate an ap-
of uniprocessor machines, so our user-level runtime borplication or build system bug, whose appropriate solu-
rows distributed file system principles to offer applica- tion is to fix the bug and re-run the job. Interactive use
tions a shared file system abstraction. would demand a conflict handling policy that avoids los-

ing data. The user-level runtime could alternatively useor to log files without conflict. During reconciliation, if
pessimistic locking to implement stronger consistencyboth the parent and child process have made append-only
and avoid unsynchronized concurrent writes, at the cosivrites to the same file, reconciliation appends the child’s
of more inter-space communication. latest writes to the parent’s copy of the file, and appends
The current design’s placement of each process'’s filéhe parent's latest writes to the child’s copy. Each pro-
system replica in the process’s own address space haess's output file thus accumulates all processes’ concur-
two drawbacks. First, it limits total file system size to rentwrites, though different processes may observe these
less than the size of an address space; this is a seriougites in a different order. Unlike Unix, rerunning a par-
limitation in our 32-bit prototype, though it may be less allel computation from the same inputs with and without
of an issue on a 64-bit architecture. Second, wild pointeoutput redirection yields byte-for-byte identical coresol
writes in a buggy process may corrupt the file systemand log file output.
more easily than in Unix, where a buggy process must . .
actually callwr i te() to corrupt a file. The runtime 3-4 Shared Memory Multithreading
could address the second issue by write-protecting thghared memory multithreading is popular despite the
file system area between callswoi t (), orit could nondeterminism it introduces into processes, in part be-
address both issues by storing file system data in chilg¢ause parallel code need not pack and unpack messages:
spaces not used for executing child processes. threads simply compute “in-place” on shared variables
. and structures. Since Determinator gives user spaces no
3.3 Input/Output and Logging physically shared memory other than read-only sharing
Since unprivileged spaces can access external I/O deda copy-on-write, emulating shared memory involves
vices only indirectly via parent/child interaction within distributed shared memory (DSM) techniques.
the space hierarchy, our user-level runtime treats 1/O as As with file systems, there are many approaches to
a special case of file system synchronization. In additiorDSM, but ours builds on release-consistent DSM [2,
to regular files, a process’s file system image can contaii 7], which balances efficiency with programming con-
special/O files such as a console input file and a consolevenience. Although release consistency normally makes
output file. Unlike Unix device special files, Determina- memory access behavior evisssdeterministic by re-
tor’s 1/O files actually hold data in the process'’s file sys-laxing the rules of sequential consistency, we have
tem image: for example, a process’s console input fileadapted it into a memory model we caléterministic
accumulates all the characters the process has receivednsistencyDC), which we detail elsewherg][5]. DC’s
from the console, and its console output file contains alkoots lie in early parallel Fortran systerh&[7,50], in which
the characters it has written to the console. all processors make private copies of shared data at the
When a process doesraad() from the console, beginning of a parallel “for” loop, then read and mod-
the C library first returns unread data already in the pro4ify only their private “workspaces” within the loop, and
cess’s local console input file. When no more data ismerge their results once all processors complete.
available, instead of returning an end-of-file condition, DC propagates memory changes between threads
the process calls Ret to synchronize with its parent angbredictably, only at program-defined synchronization
wait for more console input (or in principle any other points. If one thread executes the assignment ¢/’
form of new input) to become available. When the par-while another concurrently executas= 2, for exam-
ent does anai t () or otherwise synchronizes with the ple, this code yields a nondeterministic data race in stan-
child, it propagates any new input it already has to thedard memory models, butin DC itis race-free and always
child. When the parent has no new input for any waitingswapsz with . DC’s semantics might simplify simu-
children, it forwards all their input requests to its parent lations in which threads running in lock-step read and
and ultimately to the kernel via the root process. update large arrays in-place, for example. The absence
When a process does a consulei t e(), the run- of read/write conflicts in DC also simplifies implementa-
time appends the new data to its internal console outpuion, eliminating the need to execute parallel sequences
file as it would append to a regular file. The next time thespeculatively and risk aborting and wasting effort if a de-
process synchronizes with its parent, file system reconpendency is detected, as when deterministically emulat-
ciliation propagates these writes toward the root processng sequential consistency [8,9]22].
which forwards them to the kernel’s I/O devices. A pro- Our runtime uses the kernel’'s Snap and Merge opera-
cess can request immediate synchronization and outptibns (Sectiofl 2]3) to emulate shared memory with deter-
propagation by explicitly calling sync() . ministic consistency and “fork/join” thread synchroniza-
The file system reconciliation mechanism handlestion. To fork a child, the parent thread calls Put with the
“append-only” writes differently from other file changes, Copy, Snap, Regs, and Start options to copy the shared
enabling processes to write concurrently to the consolgart of its memory into a child space, save a snapshot of

Single-threaded || Private | | File' | md5Ssearch{unsigned charhash int len, int nthread$
Process [Memov | S H charbuflent+1], outpuflen+1];
int done= 0, found=0, i;
first_string(&buf, len);

% %
ohid 11 Shared | File" [Thvead- [| || Shared || File' " [Thvead- while (!done&& ! foung
Space ‘Memory “LSYslem ;;Private; Memoryn" System " Private | for (l =0:i < nthreads i++)
nextstring(&buf, len, &dong;
Memory File System . N
econciliation econciliation - - =
Recongilati Reconciliati if (thread_fork (i IN_CHILD)
Master BE Grared TMEIERY checkmd5(& buf, hash &output &found;
Multithreaded Space | Memery | [.System thread_exit();
Process L A o . H X H
for (i = 0;i < nthreads i++)
/ / thread_join (i);
Single-threaded " Private | (= File , —‘
Process { Memory ; SRS
‘ : Figure 6: Pseudocode for parallel “MD5 cracker.”

‘ Determinator Kernel ‘

if the file system area is shared, then the threads share a
Figure 5: A multithreaded process built from one space;ommon file descriptor namespace as in Unix. Excluding
per thread, with a master space managing synchronizghe file system area from shared space and using normal
tion and memory reconciliation. file system reconciliation (Secti@n B.2) to synchronize it
yields thread-private file tables.

that memory state in the child, and start the child run- The C pseudocode in Figuie 6, a simplified frag-
ning, as illustrated in Figudd 5. The master thread mayment of a brute-force “MD5 cracking” benchmark
fork multiple children in parallel this way. To synchro- We use later in Sectiohl 5, illustrates two convenient
nize with a child and collect its results, the parent callsproperties of deterministic consistency. First, since
Get with the Merge option, which merges all changes théhreads can have private stacks in overlapping address
child made to its shared address space, since the childi@ngest hr ead_f or k() acts like Unix’s process-level
shapshot was taken, back into the parent's space. If bothor k() , cloning the parent’s stack into the child, so the
the parent and child—or the child and other childrenProgram need not separate the child thread’s code into
whose changes the parent has collected—have concui Separate function as pthreads requires. Second, the
rently modified the same shared memory byte since th@arent thread'siext _stri ng() call updatesbuf in-
snapshot, the kernel detects and reports this write/writ®lace before forking each child, whose “work function”
conflict (which is DC’s only form of data race). check_mdS() refers to this buffer. In a nondetermin-
Our runtime also supports barriers, the foundation ofistic thread model, this code conta!ns a data race: the
data-parallel programming models like OpenMP][12]. Parent may updateuffor the next child before the pre-
When each thread in a group arrives at a barrier, it call¥/ious child has finished reading it. Under Determinator,
Ret to stop and wait for the parent thread managing th&'OWever, this code is race-free: each child's vievbof
group. The parent calls Get with Merge to collect each'®mains as it was when that ch|ld was forked, until the
child’s changes before the barrier, then calls Put withChild explicitly callst hr ead_exi t () .
Copy and Snap to resume each child with a new share e
merr)ri/ory snapsl?hot containing all threads’ prior resultsg'5 Legacy Synchronization APIs
While DC conceptually extends to non-hierarchical syn-Although some synchronization abstractions naturally fit
chronization patterns as well|[5], such as Lisp-style fu-a deterministic model, others do not. Mutex locks are
tures [34], our kernel’'s current strict space hierarchy natsemantically nondeterministic: that they guarantee that
urally supports only hierarchical synchronization, a lim- only one thread may own a lock at once, but allow com-
itation we intend to address in the futur&ny synchro- peting threads to acquire the lock in any order. Condition
nization abstraction may be emulated at some cost as deariables, semaphores, and message queues allow multi-
scribed in the next section, however. ple threads to race to signal, post, or send, respectively,
An application can choose which parts of its addresaind these events wake up any of several waiting or read-
space to share and which to keep thread-private. By pladhg threads, violating our principle 3.
ing thread stacks outside the shared region, all threads For existing sequential code not yet parallelized,
can reuse the same stack area, and the kernel wastes we hope this code might be parallelized using nat-
effort merging stack data. If threads wish to pass pointurally deterministic synchronization abstractions like
ers to stack-allocated structures, however, then they maglata-parallel programming models such as OperiMP [12]
locate their stacks in disjoint shared regions. Similarly,and SHIM [26] provide. For code already parallelized

using nondeterministic synchronization, however, Deter{fore returning to the application, these functions check
minator’s runtime can emulate the standard pthreads ARPWhether they have been “promoted” to the master space,
via deterministic schedulin@|[8,9,22], at certain costs. and if so migrate their register state back to the child

In a process that uses nondeterministic synchronizathread and restart the scheduler in the master space.
tion, the process’s initiainaster spacenever runs ap- While deterministic scheduling provides compatibility
plication code directly, but instead runsdaterminis- with existing parallel code, it has drawbacks. The master
tic scheduler This scheduler creates one child spacespace, required to enforce a total order on synchroniza-
to run each application thread. The scheduler runs th&on operations, may be a scaling bottleneck unless exe-
threads under an artificial execution schedule, emulatingution quanta are large. Since threads can interact only
a schedule by which a true shared-memory multiprocesat quanta boundaries, however, large quanta increase the
sor might in principle run them, but using a determinis-time one thread may waste waiting for another, to steal
tic, virtual notion of “time"—e.g., number of instructions an unlocked mutex for example.
executed—to schedule thread interactions. Further, since the deterministic scheduler may pre-

Like DMP [8,122], our deterministic schedulguan- ~ empt a thread and propagate shared memory changes at
tizeseach thread’s execution by preempting it after exe-any point in application code, therogramming model
cuting a fixed number of instructions. Whereas DMP im-remains nondeterministic. If one thread runs= y’
plements preemption by instrumenting user-level codewhile another runsy = 2’, the result may beepeatable
our scheduler uses the kernel’s instruction limit featurebut is no morepredictableto the programmer than on tra-
(Sectiori 2.B). The scheduler “donates” execution quantalitional systems—in contrast with the previous section’s
to threads round-robin, allowing each thread to run conmultithreading model. While rerunning a program with
currently with other threads for one quantum, before col-exactlyidentical inputs will yield identical results, if the
lecting the thread’s shared memory changes via Mergéput is perturbed to change the length of any instruction
and restarting it for another quantum. sequence, these changes may cascade into a different ex-

A thread’s shared memory writes propagate to othe€cution schedule and triggschedule-dependeiftnot
threads only at the end of each quantum, violating setiming-dependent heisenbugs.
guential consistency [41]. Like DMP-B][8], our deter-)
ministic scheduler implements release consistency [31] Prototype Implementation
totally ordering only synchronization operations. To en-Determinator is implemented in C with small assembly
force this total order, each synchronization operationfragments, runs on the 32-bit x86 architecture, and im-
could simply spin for a a full quantum. To avoid wasteful plements the kernel API and user-level runtime facilities
spinning, however, our synchronization primitives inter- described above. Source code is available on request.
act with the deterministic scheduler directly. Since our focus is on parallel compute-bound applica-

Each mutex, for example, is always “owned” by sometions, Determinator’s /0O capabilities are currently lim-
thread, whether or not the mutex is locked. The mutex’sted. The system provides text-based console I/O and a
owner can lock and unlock the mutex without schedulerUnix-style shell supporting redirection and both scripted
interactions, but any other thread needing the mutex musind interactive use. The shell offers no interactive job
first invoke the scheduler to obtain ownership. At thecontrol, which would require currently unimplemented
current owner’s next quantum, the scheduler “steals” thénondeterministic privileges” (Sectidn 3.1). The system
mutex from its current owner if the mutex is unlocked, has no demand paging or persistent disk storage: the
and otherwise places the locking thread on the mutex'siser-level runtime’s logically shared file system abstrac-
gueue to be awoken once the mutex is available. tion currently operates in physical memory only.

Since the scheduler can preempt threads at any The kernel supports application-transparent space mi-
point, a challenge common to any preemptive scegration among up to 32 machines in a cluster, as de-
nario is making synchronization functions such asscribed in Sectiofi 215. Migration uses a synchronous
pt hread_mut ex_| ock() atomic. The kernel does messaging protocol with only two request/response types
not allow threads to disable or extend their own instruc-and implements almost no optimizations such as page
tion limits, since we wish to use instruction limits at pro- prefetching. The protocol runs directly atop Ethernet,
cess level as well, e.g., to enforce deterministic “time”and is not intended for Internet-wide distribution.
quotas on untrusted processes, or to improve user-level Implementing instruction limits (Sectidn 2.3) requires
process scheduling (see Secfion 3.1) by quantizing prothe kernel to recover control after a precise number of
cess execution. After synchronizing with a child thread,instructions execute in user mode. While the PA-RISC
therefore, the master space checks whether the instruerchitecture provided this featulie [1], the x86 does not,
tion limit preempted a synchronization function, and if so we borrowed ReVirt’s technique [23]. We first set an
so, resumes the preempted code in the master space. Beprecisehardware performance counter, which unpre-

N
o

dictably overshoots its target a small amount, to interrupt
the CPU before the desired number of instructions, ther
run the remaining instructions under debug tracing.

[S I

o
3]

md5 matmult gsort blackscholes fft lu_cont lu_noncont
Benchmark

O1CPU M2CPUs B4 CPUs M8CPUs M 12CPUs

Speedup over Linux

5 Evaluation

This section evaluates the Determinator prototype, firs
informally, then examining single-node and distributed

parallel processing performance, and finally code size. Figure 7: Determinator performance relative to Linux on

5.1 Experience Using the System various parallel benchmarks.

We find that a deterministic programming model sim- o i) . _
plifies debugging of both applications and user_|eve|cross—n_ode distribution via space migration. In their fi-
runtime code, since user-space bugs are always repré‘-al projects they extended the OS with features such as

ducible. Conversely, when we do observe nondetermind'@Phics, pipes, and a remote shell. While instructional
istic behavior, it can result only from a kernel (or hard- US€ iS by no means indicates a system's real-world utility,
ware) bug, immediately limiting the search space. we find the success of the students in understanding and

Because Determinator’s file system holds a process’2uilding on Determinator's architecture promising.
output u,ntil thg ngxt synchronization ,event (often the5'2 Single-node Multicore Performance
process’s termination), each process’s output appears
as a unit even if the process executes in parallel withSince Determinator runs user-level code “natively” on
other output-generating processes. Further, different pr the hardware instead of rewriting user code [8, 22], we
cesses’ outputs appear in a consistent order across rurkpect it to perform comparably to conventional systems
as if run sequentially. (The kernel provides a system callvhen executing single-threaded, compute-bound code.
for debugging that outputs a line to the “real” console im-Since space interactions require system calls, context
mediately, reflecting true execution order, but chaotjcall switches, and virtual memory operations, however, we
interleaving output like standard systems.) expect determinism to incur a performance cost in pro-

While race detection tools exist [27,45], we found it portion to the amount of interaction between spaces.
convenient that Determinator detects races all the time Figure[T shows the performance of several shared-
under “normal-case” execution, without requiring the memory parallel benchmarks we ported, relative to the
user to run a special tool. Since the kernel detects sharegame benchmarks running on the 32-bit version of
memory conflicts and the user-level runtime detects fillubuntu Linux 9.10. Thend5benchmark searches for
system conflicts at every synchronization event, Deteran ASCII string yielding a particular MD5 hash, as in
minator's model makes race detection as standard as de-brute-force password crackenatmultmultiplies two
tecting division by zero or illegal memory accesses. 1024 x 1024 integer matricegsortperforms a recursive

A subset of Determinator doubles 80S “Paral- parallel quicksort on an integer arrdyjackscholess a fi-
lel Instructional Operating System,” which we used in hancial benchmark from the PARSEC suitel[11]; &itd
Yale's operating system course this spring. While thelu_cont andlu_noncontare Fast Fourier Transform and
OS course’s objectives did not include determinism, they-U-decomposition benchmarks from SPLASH:2][56].
included introducing students to parallel, multicore, andWe tested all benchmarks on a 2 socked core, 2.2GHz
distributed operating system concepts. For this purposéAMD Opteron PC.
we found Determinator/PIOS to be a useful instructional Coarse-grained benchmarks likel5 matmult gsort
tool due to its simple design, minimal kernel API, and blackscholesandfft show performance comparable with
adoption of distributed systems techniques within andthat of nondeterministic multithreaded execution under
across physical machines. PIOS is partly derived fromLinux. Themd5Sbenchmark shows better scaling on De-
MIT's JOS [37], and includes a similar instructional terminator than on Linux, achieving 2125x speedup
framework where students fill in missing pieces of aover Linux on 12 cores. We have not identified the pre-
“skeleton.” The twelve students who took the course,cise cause of this speedup over Linux but suspect scaling
working in groups of two or three, all successfully reim- bottlenecks in Linux’s thread system [54].
plemented Determinator's core features: multiproces- Porting theblackscholedenchmark to Determinator
sor scheduling with Get/Put/Ret coordination, virtual required no changes as it uses deterministically sched-
memory with copy-on-write and Snap/Merge, user-leveluled pthreads (Sectidn_3.5). The deterministic sched-
threads with fork/join synchronization (but not determin- uler’s quantization, however, incurs a fixed performance
istic scheduling), the user-space file system with ver-cost of about 35% for the chosen quantum of 10 million
sioning and reconciliation, and application-transparentnstructions. We could reduce this overhead by increas-

10

12 x 2
& 1 = ideal I
o == md5 5
- 8 blackscholes 3 !
2 6 == matmult _% 0.5 -
S 4 ft R B _all ol Bnill
3 2 == gsort » 1K 2K 5K 10K 20K 50K 100K 200K 500K 1M
$ 0 e =m|y_cont Array size (number of elements)
c% lu_noncont H2CPUs M4CPUs M8CPUs M 12CPUs

0 2 4 6 8 10 12

Figure 8: Determinator parallel speedup over single- Figure 10: Parallel quicksort with varying array size.

CPU performance on various benchmarks.

-
o

Speedup over local 1-node run
(log scale)

x 4

2,

-

5]

3 2 == deal

2, == md5-tree
§_0 [h md>5-circuit
[7)

== matmult-
16x16 32x32 64x64 128x128 256x256 512x512 1024x1024 atmult-ree

Matrix size
[J1CPU @2CPUs M4CPUs M8CPUs M 12CPUs

o
=

1 10
Number of nodes (log scale)

Figure 9: Matrix multiply with varying matrix size.

Figure 11: MD5 benchmark on varying-size clusters.
ing the quantum, or eliminate it by porting the bench-

mark to Determinator’s “native” parallel API. Both benchmarks still run in a (logical) shared memory

¢ The fine—grain(_ed(;{ be_nchrﬂarks show_a hig,her_per—l model via Snap/Merge. Since we did not have a clus-
ormance cost, indicating that D_etermmato_rs_ V|r_tua ter on which we could run Determinator natively, we ran
memory-based approach to enforcing determinism is Nok under QEMU [6], on a cluster of 2 socket 2 core,
well-suited to fine-grained parallel applications. Future2 4GHz Intel Xeon machines running SUSE Linux 11.1

halr(];jwefl.re enhgncgmentﬁ r:ughtl_matlfe detﬁrmln:smgactl— Figure[11 shows parallel speedup under Determinator
cal for fine-grained parallel applications, however [22]. relative to local single-node execution in the same envi-

Figure[8 shows each benchmark’s speedup relative to,nment, on a log-log scale. md5-circuit the master

single-threaded execution on Determinator. The “embargy, ;6 acts like a traveling salesman, migrating serially to
rassingly parallelind5andblackscholescale wellmat-

k each “worker” node to fork child processes, then retrac-
mult andfft level off after four processors (but still per-

;) ing the same circuit to collect their results. Tine5-tree
form comparably to Linux as Figuté 7 shows), and the, 4 iation forks workers recursively in a binary tree: the
remaining benchmarks scale poorly.

master space forks children on two nodes, those children
To quantify further the effect of parallel interaction gach fork two children on two nodes, etc. Tiatmult-
granularity on deterministic execution performance, Fig-yree henchmark implements matrix multiply with recur-
ures 9 an 10 show Linux-relative performancerat- gjve work distribution as imd5-tree
mglt andgsort, respectively, for_vgrying prob_lem_sizes. The “embarrassingly parallethd5-treeperforms and
With both benchmarks, deterministic execution incurs ag.gjes well, but only with recursive work distribution.
high performance cost on small problem sizes requiring\atrix multiply levels off at two nodes, due to the
frequentinteraction, but on large problems Determinatot, mqynt of matrix data the kernel transfers across nodes
is competitive with and sometimes faster than Linux. i3 its simplistic page copying protocol, which currently
performs no data streaming, prefetching, or delta com-
pression. The slowdown for 1-node distributed execution
While Determinator’s rudimentary space migration (Sec-in matmult-treeeflects the cost of transferring the matrix
tion [2.8) is far from providing a full cluster comput- to a (single) remote machine for processing.
ing architecture, we would like to test whether such a Figure[12 shows that the shared memang5-tree
mechanism can extend a deterministic computing modehnd matmult-treebenchmarks, running on Determina-
across nodes with usable performance at least for somer, perform comparably to nondeterministic, distributed
applications. We therefore changed tmel5andmat- memory equivalents running on Puppy Linux 4.3.1, in
mult benchmarks to distribute workloads across a clusthe same QEMU environment. The Determinator version
ter of up to 32 uniprocessor nodes via space migrationof md5is 63% the size of the Linux version (62 lines con-

5.3 Distributed Computing Performance

11

3 2 nigues as in Determinator. Since these schedulers runin

® 18 O 1 node the same process as the application itself, bugs or ma-

§ ! :i;;‘jz: licious code can violate determinism by corrupting the

2 05 B 8 nodes scheduler, as the authors acknowledge. Determinator’s

g 0 H 16 nodes HH .

& md5-tree mdbecircuit | matmult-ree kernel-enforced model ensures repeatability of arbitrary
Benchmark code in both multithreaded and multi-process computa-

tions. Determinator’'s user-level runtime also develops
Figure 12: Deterministic, shared-memory MD5 bench-deterministic versions of OS abstractions such as shared
mark compared with a nondeterministic, distributed-file systems, which lie outside the domain of application-

memory Linux implementation. level deterministic schedulers.
DMP and Grace emulate sequential consistency [41]
Determinator PIOS by running parallel tasks speculatively, detecting
Component Semicolons| Semicolons read/write dependencies between tasks, and re-executing
Kernel core 2044 1847

tasks serially on detecting a dependency. DMR-B [8]

Hardware/ dev'f:e drivers /51 647 relaxes memory consistency to optimize parallel execu-
User-level runtime 2952 1079 fi but still lat det inisti .

Generic C library code 6948 394 ion, but still emulates a nondeterministic programming
User-level programs 1797 1418 model where writes propagate between threads at arbi-

Total 14,492 5385 trary points unpredictable to the developer. Determinator
combines ideas from early parallel Fortran systelms [7,
Table 3: Implementation code size of the Determinatoi50] with release consistendy![2.17]81] 39] to develop a
OS and of PIOS, its instructional subset. “naturally deterministic” programming modél[5]. In this
model, read/write conflicts do not exist (only write/write
taining semicolons versus 99), which uses remote shellsonflicts), and shared memory or file changes propa-
to coordinate workers. The Determinator versiomait- gate among concurrent threads or processdgat ex-
multis 34% the size of its Linux equivalent (90 lines ver- plicit synchronization points. While focusing on this de-

sus 263), which passes data via TCP. terministic programming model, Determinator’s runtime
) . can emulate nondeterministic models via deterministic
5.4 Implementation Complexity scheduling to run legacy parallel code.

To provide a feel forimplementation complexity, Table 3 Many techniques are available for logging and replay-
shows source code line counts for Determinator, as weling nondeterministic events in parallel applications [21,
as its PIOS instructional subset, counting only lines con28,[42/46]. SMP-ReVirt can log and replay a multi-
taining semicolons. The entire system is less than 15,00processor virtual maching [24], supporting uses such as
lines, about half of which is generic C and math library system-wide intrusion analysis [23,/136] and replay de-
code needed mainly for porting Unix applications easily.bugging [40]. Logging a parallel system’s nondetermin-
istic events is costly in performance and storage space,
6 Related Work however, and usually infeasible for “normal-case” ex-

The benefits of deterministic programming models arefcution. Determinator demonstrates the feasibility of
well-known [13[43]. Recognizing these benefits, Ioara|_prOV|d|ng system-enforced determinism for normal-case

lel languages such as SHINM [25,26] 52] and DPJ [13’ex_e§:ution, without internal event I(_)gging, while main-
14] enforce determinism at language level, but cannof@ining performance comparable with current systems at
run legacy or multi-process parallel code. Race detecl€ast for coarse-grained parallel applications.
tors [27[45] can detect heisenbugs in nondeterministic 1ransactional memory (TM) [35.51] isolate threads’
parallel programs, but may miss heisenbugs resultind"”tes_from each other between tr_ansgctlon s_tart and
from higher-level order dependencigs [3]. Language excommit/abort. TM offers no deterministic ordering be-
tensions can dynamically check determinism assertion§Veen transactions, however: like mutex locks, transac-
in parallel code[[16, 48], but heisenbugs may persist ifions guarantee only atomicity, not determinism.
the programmer omits an assertion. Only a deterministic7 .
environment prevents heisenbugs in the first place. Conclusion

Application-level deterministic schedulers such asDeterminator is only a first step towards making deter-
DMP [22], Gracel[[9], and CoreDet|[8] instrument an ap- ministic execution readily available and broadly usable
plication process to isolate threads’ memory accesse$or normal-case execution of parallel applications. Nev-
and run the threads on an artificial, deterministic exe-ertheless, our experiments suggest that, with appropri-
cution schedule. DMP and CoreDet isolate threads viate kernel and user-level runtime designs, it is possible
code rewriting, while Grace uses virtual memory tech-to provide system-enforced deterministic execution effi-

12

ciently at least for coarse-grained parallel applications
both on a single multicore machine and across a cluster.
15
References [15]
[1] PA-RISC 1.1 Architecture and Instruction Set Ref-
erence Manual Hewlett-Packard, third edition,
Feb. 1994.

C. Amza et al. TreadMarks: Shared memory com-
puting on networks of workstationslEEE Com-
puter, 29(2):18-28, Feh. 1996.

C. Artho, K. Havelund, and A. Biere. High-level
data races. IWVEIS pages 82-93, Apr. 2003.

[4] A. Aviram and B. Ford. Determinating timing chan-
nels in statistically multiplexed clouds, Mar. 2010.
http://arxiv.org/abs/ 1003. 5303.

(16]

(2]
[17]

[3]
(18]

(19]

[5] A. Aviram and B. Ford. Determinis-
tic consistency: A programming model
for shared memory parallelism, Feb. 2010.

http://arxiv.org/abs/0912. 0926. [20]
F. Bellard. QEMU, a fast and portable dynamic
translator, Apr. 2005.

M. Beltrametti, K. Bobey, and J. R. Zorbas. [21]
The control mechanism for the Myrias parallel
computer system. Computer Architecture News
16(4):21-30, Sept. 1988.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: A compiler and runtime
system for deterministic multithreaded execution.[23]
In 15th ASPLOSMar. 2010.

E. D. Berger, T. Yang, T. Liu, and G. No-
vark. Grace: Safe multithreaded programming for
C/C++. INOOPSLA Oct. 2009.

B. N. Bershad et al. Extensibility, safety and per-
formance in the SPIN operating system. 1&th
SOSR1995.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. Iri7th International
Conference on Parallel Architectures and Compi- [26]
lation TechniquesOctober 2008.

O. A. R. Board.
gram

[6]

[7]

(22]

9]

(24]
[10]

(25]
[11]

[12] OpenMP application pro-

interface version 3.0, May 2008.

http: // www. opennp. or g/ np- docunent s/ spess
L=1]

[13] R. L. Bocchino Jr., V. S. Adve, S. V. Adve, and
M. Snir. Parallel programming must be determinis-

tic by default. In1st HotPar Mar. 2009.

R. L. Bocchino Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Sim-
mons, H. Sung, and M. Vakilian. A type and effect

(28]
[14]

system for Deterministic Parallel Java. Oct. 2009.
http://dpj.cs.uiuc. edu/ DPJ/ Publications files/

T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault-toleranceTOCS 14(1):80-107, Feb.
1996.

J. Burnim and K. Sen. Asserting and checking
determinism for multithreaded programs. ASE,
Aug. 2009.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Im-
plementation and performance of munin. 18th
SOSROct. 1991.

M. Castro and B. Liskov. Practical byzantine fault
tolerance. IrBrd OSDI| pages 173-186, Feb. 1999.

T. Chiueh, G. Venkitachalam, and P. Pradhan. In-
tegrating segmentation and paging protection for
safe, efficient and transparent software extensions.
In 17th SOSPpages 140-153, Dec. 1999.

J.-D. Choi and H. Srinivasan. Deterministic replay
of Java multithreaded applications. 8PDT '98:
Proceedings of the SIGMETRICS symposium on
Parallel and distributed toolspages 48-59. 1998.

R. S. Curtis and L. D. Wittie. BugNet: A debugging
system for parallel programming environments. In
3rd ICDCS pages 394-400, Oct. 1982.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
Deterministic shared memory multiprocessing. In
14th ASPLOSMar. 2009.

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,

and P. M. Chen. ReVirt: Enabling intrusion analy-
sis through virtual-machine logging and replay. In
5th OSDJ Dec. 2002.

G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,
and P. M. Chen. Execution replay for multiproces-
sor virtual machines. INEE, Mar. 2008.

S. A. Edwards and O. Tardieu. Shim: A determin-
istic model for heterogeneous embedded systems.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systemd.4(8):854-867, Aug. 2006.

S. A. Edwards, N. Vasudevan, and O. Tardieu. Pro-
gramming shared memory multiprocessors with de-
terministic message-passing concurrency: Compil-
ing SHIM to Pthreads. IDATE, Mar. 2008.

q.J‘Pé:u.gler and K. Ashcraft. RacerX: effective, static

detection of race conditions and deadlocksl ®ith
SOSROct. 2003.

S. I. Feldman and C. B. Brown. IGOR: A sys-
tem for program debugging via reversible execu-
tion. In Workshop on Parallel & Distributed De-
bugging pages 112-123, May 1988.

13

http://arxiv.org/abs/1003.5303
http://arxiv.org/abs/0912.0926
http://www.openmp.org/mp-documents/spec30.pdf
http://dpj.cs.uiuc.edu/DPJ/Publications_files/paper_1.pdf

[29] B. Ford, M. Hibler, J. Lepreau, P. Tullmann,
G. Back, and S. Clawson. Microkernels meet re-
cursive virtual machines. IBnd OSD] pages 137—
151, 1996.

IEEE Transactions on Computer€-36(4):471—
482, Apr. 1987.

[43] E. Lee. The problem with threadsComputer
39(5):33-42, May 2006.

[30] T. Garfinkel, K. Adams, A. Warfield, and 144] g |y, s. Park, E. Seo, and Y. Zhou. Learning from
J. Franklin. ~ Compatibility is not transparency: mistakes — a comprehensive study on real world
VMM detection myths and realities. IHotOS-X| concurrency bug characteristics. 18th ASPLOS
May 2007. pages 329-339, Mar. 2008.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib- 1451 M. Musuvathi, S. Qadeer, T. Ball, and G. Basler.
bons, A. Gupta, and J. Hennessy. Memory con- ~ Einging and reproducing heisenbugs in concurrent
sistency and_ event ordering in scalable shared- programs. IrProceedings of the 8th USENIX Sym-
memory multiprocessors. [h7th ISCA pages 15— posium on Operating System Design and Imple-

26, May 1990. mentation (OSDI '08)pages 267—280. 2008.

. Goldberg, D. Wagner, R. Thomas, and E. A. 46] D. 7. Pan and M. A. Linton. Supporting reverse

Brewer. A secure environment for untrusted helper execution of parallel programs. RADD '88, pages
applications. In6th USENIX Security Symposiym 124-129. 1988. '

1996.
[47] D.S. Parker, Jr. et al. Detection of mutual inconsis-
[33] A. Haeb_tarlgn, P. Kouznetsov, and P. Druschel.” " gy in distributed systemtEEE Transactions on
PeerReview: Practical accountability for dis- Software EngineeringSE-9(3), May 1983.

tributed systems. 181st SOSPOct. 2007.) .
[48] C. Sadowski, S. N. Freund, and C. Flanagan. Sin-

R. H. Halstead, Jr. Multilisp: A language for con- gleTrack: A dynamic determinism checker for mul-
current symbolic computatioTOPLAS 7(4):501- tithreaded programs. 1b8th ESOPMar. 2009.

538, Oct. 1985. ,)
i) [49] F. B. Schneider. Implementing fault-tolerant ser-
[35] M. I.-lerllhy and J. E. B. Moss. Transactional mem- vices using the state machine approach: A tutorial.
ory: Architectural support for lock-free data struc- Technical Report 86-800, Cornell University, Jan.
tures. In20th ISCA pages 289-300, May 1993. 1990.

[36] A. Joshi, S. T. King, G. W. Dunlap, and P. M. [50] 3. T. Schwartz. The burroughs FMP machine, Jan.
Chen. Detecting past and present intrusions 1980. Ultracomputer Note #5.

through vulnerability-specific predicates. SOSP ,) .
'05: Proceedings of the twentieth ACM sympo- [51] N. Shavit and D. Touitou. Software transactional

[31]

[32]

[34]

[37]

[38]

sium on Operating systems principlgsages 91—
104. 2005.

F. Kaashoek et al.
Operating system engineering.
http://pdos.csail.mt. edu/ 6. 828/.

G. Kahn. The semantics of a simple language for

parallel programming. Ihnformation Processing
pages 471-475. 1974.

6.828: [52] O. Tardieu and S. A. Edwards.

[53] D. B. Terry et al.

memory. Distributed Computing 10(2):99-116,
Feb. 1997.

Scheduling-
independent threads and exceptions in SHIM. In
EMSOFT pages 142-151, Oct. 2006.

Managing update conflicts in
Bayou, a weakly connected replicated storage sys-
tem. In15th SOSP1995.

[39] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy [54] R. von Behren, J. Condit, F. Zhou, G. C. Necula,

[40] S.T. King, G. W. Dunlap, and P. M. Chen. Debug- [55]

[41]

[42]

release consistency for software distributed shared
memory. InNISCA pages 13-21, May 1992.

ging operating systems with time-traveling virtual
machines. IUSENIX pages 1-15, Apr. 2005.

L. Lamport. How to make a multiproces-

sor computer that correctly executes multiprocesJ%]

programs. |EEE Transactions on Computers
28(9):690-691, Sept. 1979.

T. J. Leblanc and J. M. Mellor-Crummey. De-
bugging parallel programs with instant replay.

and E. Brewer. Capriccio: Scalable threads for in-
ternet services. IBOSP'03

B. Walker, G. Popek, R. English, C. Kline, and
G. Thiel. The LOCUS distributed operating sys-
tem. SIGOPS Operating Systems Revyidw(5),
Oct. 1983.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characteri-
zation and methodological considerations2ind
ISCA pages 24-36, June 1995.

14

http://pdos.csail.mit.edu/6.828/

	1 Introduction
	2 The Determinator Kernel
	2.1 Kernel API Design Principles
	2.2 Spaces
	2.3 System Call API
	2.4 Reasoning about Determinism
	2.5 Distribution via Space Migration

	3 Emulating High-Level Abstractions
	3.1 Processes and fork/exec/wait
	3.2 A Shared File System
	3.3 Input/Output and Logging
	3.4 Shared Memory Multithreading
	3.5 Legacy Synchronization APIs

	4 Prototype Implementation
	5 Evaluation
	5.1 Experience Using the System
	5.2 Single-node Multicore Performance
	5.3 Distributed Computing Performance
	5.4 Implementation Complexity

	6 Related Work
	7 Conclusion

