
ar
X

iv
:1

00
5.

34
50

v1
 [

cs
.O

S
]

19
 M

ay
 2

01
0

Efficient System-Enforced Deterministic Parallelism
UNPUBLISHED DRAFT

Amittai Aviram, Shu-Chun Weng, Sen Hu, Bryan Ford
Yale University

Abstract

Deterministic execution offers many benefits for debug-
ging, fault tolerance, and security. Runningparallel pro-
grams deterministically is usually difficult and costly,
however—especially if we desiresystem-enforcedde-
terminism, ensuring precise repeatability of arbitrarily
buggy or malicious software. Determinator is a novel
operating system that enforces determinism on both mul-
tithreaded and multi-process computations. Determi-
nator’s kernel provides only single-threaded, “shared-
nothing” address spaces interacting via deterministic
synchronization. An untrusted user-level runtime uses
distributed computing techniques to emulate familiar ab-
stractions such as Unix processes, file systems, and
shared memory multithreading. The system runs parallel
applications deterministically both on multicore PCs and
across nodes in a cluster. Coarse-grained parallel bench-
marks perform and scale comparably to—sometimes bet-
ter than—conventional systems, though determinism is
costly for fine-grained parallel applications.

1 Introduction
It is often useful to run softwaredeterministically, ensur-
ing a given program and input always yields exactly the
same result. Deterministic execution makes bugs repro-
ducible, and is required for “record-and-replay” debug-
ging [28,40]. Fault tolerance [15,18,49] and accountabil-
ity mechanisms [33] rely on execution being determinis-
tic and bit-for-bit identical across state replicas. Intru-
sion analysis [23,36] and timing channel control [4] can
further benefit fromsystem-enforced determinism, where
the system prevents application code from depending on
execution timing or other unintended inputs even if the
code is maliciously designed to do so.

Multicore processors and ubiquitous parallelism make
programming environments increasingly nondeterminis-
tic, however. Nondeterminism makes software harder to
develop and debug [43,44]. Race detectors help [27,45],
but even properly synchronized programs may have
higher-level heisenbugs [3]. The cost of logging and re-
playing the internal nondeterministic events in parallel
software [20,24] can be orders of magnitude higher than
that of logging only a computation’s external inputs, es-
pecially for system-enforced replay [23, 24]. This cost
usually precludes logging “normal-case” execution, di-

minishing the technique’s effectiveness. A heisenbug
or intrusion that manifests “in the field” with logging
disabled may not reappear during subsequent logged
attempts to reproduce it—especially with malwarede-
signedto evade analysis by detecting the timing impact
of logging or virtualization [30].

Motivated by its many uses, we would like system-
enforced determinism to be available fornormal-caseex-
ecution of parallel applications. To test this goal’s feasi-
bility, we built Determinator, an operating system that
not only executes individual processes deterministically,
as in deterministic user-level scheduling [8, 9], but can
enforce determinism on hierarchies of interacting pro-
cesses. Rerunning a multi-process Determinator compu-
tation with the same inputs yields exactly the same out-
puts, without internal event logging. Determinator treats
all potential nondeterministic inputs to a computation—
including all timing information—as “privileged infor-
mation,” which normal applications cannot obtain except
via controlled channels. We treat deterministic execu-
tion as not just a debugging tool but a security principle:
if malware infects an unprivileged Determinator applica-
tion, it should be unable to evade replay-based analysis.

System-enforced determinism is challenging because
current programming environments and APIs are riddled
with timing dependencies. Most shared-memory parallel
code uses mutual exclusion primitives: even when used
correctly, timing determines the application-visible order
in which competing threads acquire a mutex. Concur-
rency makes names allocated from shared namespaces,
such as pointers returned bymalloc() and file descrip-
tors returned byopen(), timing-dependent. Synchro-
nizing operations like semaphores, message queues, and
wait() nondeterministically return “the first” event,
message, or terminated process available. Even single-
threaded processes are nondeterministic when run in
parallel, due to their interleaved accesses to shared re-
sources. A parallel ‘make -j’ command often presents
a chaotic mix of its child tasks’ outputs, for example, and
missing dependencies can yield “makefile heisenbugs”
that manifest only under parallel execution.

Addressing these challenges in Determinator led us to
the insight that timing dependencies commonly fall into
a few categories: unintended interactions via shared state
or namespaces; synchronization abstractions with share-

1

http://arxiv.org/abs/1005.3450v1

able endpoints; true dependencies on “real-world” time;
and application-level scheduling. Determinator avoids
physically shared state by isolating concurrent activities
during normal execution, allowing interaction only at ex-
plicit synchronization points. The kernel’s API uses lo-
cal, application-chosen names in place of shared, OS-
managed namespaces. Synchronization primitives op-
erate “one-to-one,” betweenspecificthreads, preventing
threads from “racing” to an operation. Determinator
treats access to real-world time as I/O, controlling it as
with other devices such as disk or network. Finally, De-
terminator requires scheduling to be separated from ap-
plication logic and handled by the system, or else emu-
lated using a deterministic, virtual notion of “time.”

Since we wish to derive basic principles for system-
enforced determinism, Determinator currently makes no
attempt at compatibility with existing operating systems,
and provides limited compatibility with existing APIs.
The kernel’s low-level API offers only one user-visible
abstraction,spaces, representing execution state and vir-
tual memory, and only three system calls by which
spaces synchronize and communicate. The API’s min-
imality facilitates both experimentation and reasoning
about its determinism. Despites this simplicity, our un-
trusted, user-level runtime builds atop the kernel to pro-
vide familiar programming abstractions. The runtime
uses file replication and versioning [47] to offer appli-
cations a logically shared file system via standard APIs;
distributed shared memory [2,17] to create multithreaded
processes logically sharing an address space; and deter-
ministic scheduling [8, 9, 22] to support pthreads-style
synchronization. Since the kernel enforces determinism,
bugs or vulnerabilities in this runtime cannot compro-
mise the determinism guarantee.

Experiments with common parallel benchmarks sug-
gest that Determinator can run coarse-grained paral-
lel applications deterministically with both performance
and scalability comparable to nondeterministic environ-
ments. Determinism incurs a high cost on fine-grained
parallel applications, however, due to Determinator’s use
of virtual memory to isolate threads. For “embarrass-
ingly parallel” applications requiring little inter-thread
communication, Determinator can distribute the com-
putation across nodes in a cluster mostly transparently
to the application, maintaining usable performance and
scalability. The current prototype is merely a proof-
of-concept and has many limitations, such as a restric-
tive space hierarchy, limited file system size, no per-
sistent storage, and inefficient cross-node communica-
tion. Also, our “clean-slate” approach is motivated by
research goals; a more realistic approach to deploying
system-enforced determinism would be to add a deter-
ministic “sandbox” [19,32] to a conventional OS.

This paper makes three main contributions. First, we

identify five OS design principles for system-enforced
determinism, and illustrate their application in a novel
kernel API. Second, we demonstrate ways to build famil-
iar abstractions such as file systems and shared memory
atop a kernel API restricted to deterministic primitives.
Third, we present the first system that can enforce deter-
ministic execution on multi-process computations with
performance acceptable for “normal-case” use, at least
for some (coarse-grained) parallel applications.

Section 2 describes Determinator’s kernel design prin-
ciples and API, then Section 3 details its user-space ap-
plication runtime. Section 4 examines our prototype im-
plementation, and Section 5 evaluates it informally and
experimentally. Finally, Section 6 outlines related work,
and Section 7 concludes.

2 The Determinator Kernel
This section describes Determinator’s underlying design
principles, then its low-level execution model and kernel
API. We do not expect normal applications to use the ker-
nel API directly, but rather the higher-level abstractions
the user-level runtime provides, as described in the next
section. We make no claim that this API is the “right” de-
sign for a determinism-enforcing kernel, but merely use
it to explore design challenges and strategies.

2.1 Kernel API Design Principles
We first briefly outline the principles we developed
in designing Determinator, which address the common
sources of timing dependencies we are aware of. We
further discuss the motivations and implications of these
principles below as we detail the kernel API. We make
no claim that this is a complete or conclusive list, but at
least for Determinator these principles provesufficientto
offer a deterministic execution guarantee, for which we
briefly sketch formal arguments later in Section 2.4.

1. Isolate the working state of concurrent activities
between synchronization points. Determinator’s ker-
nel API directly provides no shared state abstractions,
such as global file systems or writeable shared memory.
Concurrent activities operate within private “sandboxes,”
interacting only at deterministically defined synchroniza-
tion points, eliminating timing dependencies due to inter-
leaved access to shared state.

2. Use local, application-chosen names instead of
global, system-allocated names. APIs that assign
names from a shared namespace introduce nondetermin-
ism even when the named objects are unshared: execu-
tion timing affects the pointers returned bymalloc()
or mmap() or the file numbers returned byopen()
in multithreaded Unix processes, and the process IDs
returned byfork() or the file names returned by
mktemp() in single-threaded processes. To avoid these

2

Figure 1: The kernel’s hierarchy ofspaces, each contain-
ing private register and virtual memory state.

sources of nondeterminism, Determinator’s kernel API
uses onlylocal names chosen by the application: user-
level code decides where to allocate memory and what
process IDs to assign children. This principle ensures
that naming a resource reveals no shared state informa-
tion other than what the application itself provided.

3. User code determines the participants in any syn-
chronization operation, and the point in each par-
ticipant’s execution at which synchronization occurs.
The kernel API allows a thread or process to synchro-
nize with a particular target, like Unix processes use
waitpid() to wait for a specific child. The API does
not support synchronizing with “any” or “the first avail-
able” target as in Unix’swait(), or interrupting an-
other thread at a timing-dependent point in its execution,
as with Unix signals. Nondeterministic synchronization
APIs may be emulated deterministically, if needed for
compatibility, as described in Section 3.5.

4. Treat access to explicit time sources as I/O.User
code has no direct access to clocks counting either real
time, as ingettimeofday(), or nondeterministic
“virtual time” measures, as ingetrusage(). Deter-
minator treats such timing sources as I/O devices that
user code may access only via controlled channels, as
with other devices such as network, disk, and display.

5. Separate application logic from scheduling. De-
terministic applications cannot make timing-dependent
internal scheduling or load-balancing decisions, as to-
day’s applications often do using thread pools or work
queues. Applications mayexposearbitrary parallelism
and provide scheduling hints—in principle they could
even download extensions into the kernel to customize
scheduling [10]—provided the kernel prevents custom
scheduling policies from affecting computed results.

2.2 Spaces
Determinator executes application code within a hierar-
chy ofspaces, illustrated in Figure 1. Each space consists
of CPU register state for a single control flow, and private
virtual memory containing code and data directly acces-

Put Get Option Description
X X Regs PUT/GET child’s register state.
X X Copy Copy memory to/from child.
X X Zero Zero-fill virtual memory range.
X Snap Snapshot child’s virtual memory.
X Start Start child space executing.

X Merge Merge child’s changes into parent.
X X Perm Set memory access permissions.
X X Tree Copy (grand)child subtree.

Table 2: Options/arguments to the Put and Get calls.

sible within that space. A Determinator space is analo-
gous to a single-threaded Unix process, with several im-
portant differences; we use the term “space” to highlight
these differences and avoid confusion with the “process”
and “thread” abstractions Determinator emulates at user
level, as described later in Section 3.

As in a nested process model [29], a Determinator
space cannot outlive its parent, and a space can directly
interactonly with its immediate parent and children via
three system calls described below. Following princi-
ple 1 above, the kernel provides no file systems, writable
shared memory, or other shared state abstractions.

Following principle 4, only the distinguishedroot
spacehas direct access to nondeterministic I/O devices
including clocks; other spaces can access I/O devices
only indirectly via parent/child interactions, or via I/O
privileges delegated by the root space. A parent space
can thus control all nondeterministic inputs into any un-
privileged space subtree, e.g., logging inputs for future
replay. (This space hierarchy also creates a performance
bottleneck for I/O-bound applications, a limitation of the
current design we intend to address in future work.)

2.3 System Call API
Determinator spaces interact only as a result of proces-
sor traps and the kernel’s three system calls—Put, Get,
and Ret, summarized in Table 1. Put and Get take sev-
eral optional arguments, summarized in Table 2. Most
options can be combined: e.g., in one Put call a space
can initialize a child’s registers, copy a range of the par-
ent’s virtual memory into the child, set page permissions
on the destination range, save a complete snapshot of the
child’s address space, and start the child executing.

As per principle 2 above, each space has a private
namespace of child spaces, which user-level code man-
ages. A space specifies a child number to Get or Put, and
the kernel creates that child if it doesn’t already exist, be-
fore performing the requested operations. If the specified
child did exist and was still executing at the time of the
Put/Get call, the kernel blocks the parent’s execution un-
til the child stops due to a Ret system call or a processor
trap. These “rendezvous” semantics ensure that spaces
synchronize only at well-defined points in both spaces’

3

Call Description
Put Copy register state and/or a virtual memory range into a child space, and optionally start the child executing.
Get Copy register state, a virtual memory range, and/or changessince the last snapshot out of a child space.
Ret Stop and wait for parent to issue a Get or Put.

Table 1: System calls comprising Determinator’s kernel API.

execution, as required by principle 3.
The Copy option logically copies a range of virtual

memory between the invoking space and the specified
child. The kernel uses copy-on-write to optimize large
copies and avoid physically copying read-only pages.

Merge is available only on Get calls. A Merge is like a
Copy, except the kernel copies only bytes thatdiffer be-
tween the child’s current and reference snapshots into the
parent space, leaving other bytes in the parent untouched.
The kernel also detects conflicts: if a byte changed in
both the child’s and parent’s spaces since the snapshot,
the kernel generates an exception, treating a conflict as
a programming error like an illegal memory access or
divide-by-zero. Determinator’s user-level runtime uses
Merge to give multithreaded processes the illusion of
shared memory, as described later in Section 3.4. In prin-
ciple, user-level code could implement Merge itself, but
the kernel’s direct access to page tables makes it easy for
the kernel to implement Merge efficiently.

Finally, the Ret system call stops the calling space, re-
turning control to the space’s parent. Exceptions such as
divide-by-zero also cause a Ret, providing the parent a
status code indicating why the child stopped.

To facilitate debugging and prevent untrusted children
from looping forever, a parent can start a child with an
instruction limit, forcing control back to the parent af-
ter the child and its descendants collectively execute this
many instructions. Counting instructions instead of “real
time” preserves determinism, while enabling spaces to
“quantize” a child’s execution to implement scheduling
schemes deterministically at user level [8,22].

2.4 Reasoning about Determinism
Can we be certain the kernel API above indeed guaran-
tees that space subtrees execute deterministically despite
parallelism? While a detailed proof is out of scope, we
briefly sketch two formal arguments for this guarantee.

The first argument leverages an existing formal paral-
lel computing model: a Kahn process network [38] is a
network of single-threaded processes, which run sequen-
tial code deterministically and interact only via blocking,
one-to-one message channels. Under these restrictions,
a Kahn network behaves deterministically. Determina-
tor’s Get, Put, and Ret calls are implementable in terms
of messages on one-to-one channels, making Determina-
tor’s space hierarchy formally equivalent to a Kahn pro-
cess network, thereby ensuring its determinism.

For a more “first-principles” argument, consider a

Figure 2: A spaces migrating among two nodes and start-
ing child spaces on each node.

graph of possible execution traces of a space hierarchy.
Each node represents a synchronization point in a possi-
ble execution history of one space, vertical edges repre-
sent local computation sequences in one space between
synchronization points, and horizontal edges represent
pairwise interactions where a parent space’s Get or Put
synchronizes with a child’s Ret. From this graph we
construct a “happens-before” partial order over all syn-
chronization points in all possible executions. At each
synchronization point, assuming all prior (on the partial
order) computation sequences and synchronization inter-
actions yield only one possible result for a given set of
inputs, then the same is true after that synchronization
point: each synchronization point in a parent space inter-
acts with only one corresponding point in a specific child,
and vice versa, and synchronization effects such as mem-
ory changes depend only on the two spaces’ states prior
to synchronization. By induction on the partial order, the
entire execution history is therefore deterministic.

2.5 Distribution via Space Migration
The kernel allows space hierarchies to span not only
multiple CPUs in a multiprocessor/multicore system, but
also multiple nodes in a cluster, mostly transparently
to application code. While distribution is semantically
transparent to applications, we say “mostly transpar-
ently” because an application may have to be designed
with distribution in mind to achieve acceptable perfor-
mance. As with other aspects of the kernel’s design,
we make no pretense that this is the “right” approach to
cross-node distribution, but merely one way to extend a
deterministic execution model across a cluster.

Distribution support adds no new system calls or op-
tions to the API above. Instead, the Determinator kernel
interprets the higher-order bits in each process’s child

4

number namespace as a “node number” field. When
a space invokes Put or Get, the kernel first logically
migrates the calling space’s state and control flow to
the node whose number the user specifies as part of its
child number argument, before creating and/or interact-
ing with a child on that node specified in the remaining
child number bits. Figure 2 illustrates a space migrating
between two nodes and managing child spaces on each.

Once created, a space has ahome node, to which the
space migrates when interacting with its parent on a Ret
or trap. Nodes are numbered so that “node zero” in
any space’s child namespace always refers to the space’s
home node. If a space uses only the low bits in its
child numbers and leaves the node number field zero, the
space’s children all have the same home as the parent.

When the kernel migrates a space, it first transfers to
the receiving kernel only the space’s register state and
address space summary information. Next, the receiving
kernel requests the space’s memory pages on demand as
the space accesses them on the new node. Each node’s
kernel avoids redundant cross-node page copying in the
common case when a space repeatedly migrates among
several nodes—e.g., when a space starts children on each
of several nodes, then returns later to collect their results.
For pages that the migrating space only reads and never
writes, such as program code, each kernel reuses cached
copies of these pages whenever the space returns to that
node. The kernel currently performs no prefetching or
other adaptive optimizations. Its rudimentary messaging
protocol runs directly atop Ethernet, and does not support
TCP/IP for Internet-wide distribution.

3 Emulating High-Level Abstractions
The kernel API described above eliminates many conve-
niences to which developers and users are accustomed.
Can we reproduce them under the constraint of strict
determinism? We find that many familiar abstractions
remain feasible, although some semantically nondeter-
ministic abstractions may be costly to emulate precisely.
This section details the user-level runtime infrastructure
we developed to emulate traditional Unix processes, file
systems, threads, and synchronization under Determina-
tor.

3.1 Processes and fork/exec/wait
We make no attempt to replicate Unix process se-
mantics exactly, but would like to emulate traditional
fork/exec/wait APIs enough to support common
uses in scriptable shells, build tools, and multi-process
“batch processing” applications such as compilers.

Fork: Implementing a basic Unixfork() requires
only one Put system call, to copy the parent’s entire
memory state into a child space, set up the child’s reg-

isters, and start the child. The difficulty arises from
Unix’s global process ID (PID) namespace, a source of
nondeterminism violating our design principle 2 (Sec-
tion 2.1). Since most applications use PIDs returned by
fork() merely as an opaque argument to a subsequent
waitpid(), our runtime makes PIDs local to each pro-
cess: one process’s PIDs are unrelated to, and may nu-
merically conflict with, PIDs in other processes. This
change breaks Unix applications that pass PIDs among
processes, and means that commands like ‘ps’ must be
built into shells for the same reason that ‘cd’ already is.
This simple approach works for compute-oriented appli-
cations following the typical fork/wait pattern, however.

Sincefork() returns a PID chosen by the system,
while our kernel API requires user code to manage child
numbers, our user-level runtime maintains a “free list” of
child spaces and reserves one during eachfork(). To
emulate Unix process semantics more closely, a central
space such as the root space could manage a global PID
namespace, at the cost of requiring inter-space commu-
nication during operations such asfork().

Exec: A user-level implementation of Unixexec()
must construct the new program’s memory image, in-
tended to replace the old program, while still execut-
ing the old program’s runtime library code. Our run-
time loads the new program into a “reserved” child space
never used byfork(), then calls Get to copy that
child’s entire memory atop that of the (running) parent:
this Get thus “returns” into the new program. To ensure
that the instruction address following the old program’s
Get is a valid place to start the new program, the run-
time places this Get in a small “trampoline” code frag-
ment mapped at the same location in the old and new
programs. The runtime also carries over some Unix pro-
cess state, such as the the PID namespace and file system
state described later, from the old to the new program.

Wait: When an application callswaitpid() to wait
for a specific child, the runtime calls Get to synchronize
with the child’s Ret and obtain the child’s exit status.
(The child may return to the parent before it wishes to
terminate, in order to make I/O requests as described be-
low; in this case, the parent’s runtime services the I/O
request and resumes thewaitpid() transparently to
the application.)

Unix’s wait() is more challenging, as it violates
principle 3 by waiting forany (i.e., “the first”) child to
terminate. Our kernel’s API provides no system call to
“wait for any child,” and can’t (for unprivileged spaces)
without violating its determinism guarantee. Instead, our
runtime waits for the child that was forked earliest whose
status was not yet collected. This behavior does not af-
fect applications that fork one or more children and then
wait for all of them to complete, but affects two com-

5

Figure 3: Example parallelmake scheduling scenarios
under Unix versus Determinator: (a) and (b) with unlim-
ited parallelism (no user-level scheduling); (c) and (d)
with a “2-worker” quota imposed at user level.

mon uses ofwait(). First, interactive Unix shells use
wait() to report when backgroundprocesses complete;
thus, an interactive shell running under Determinator re-
quires special “nondeterminism privileges” to provide
this functionality (and related functions such as interac-
tive job control). Second, our runtime’s behavior may
adversely affect the performance of programs that use
wait() to implement dynamic scheduling or load bal-
ancing in user space, which violates principle 5.

Consider a parallelmake run with or without limiting
the number of concurrent children. A plain ‘make -j’,
allowing unlimited children, leaves scheduling decisions
to the system. Under Unix or Determinator, the kernel’s
scheduler dynamically assigns tasks to available CPUs,
as illustrated in Figure 3 (a) and (b). If the user runs
‘make -j2’, however, thenmake initially starts only
tasks 1 and 2, then waits for one of them to complete be-
fore starting task 3. Under Unix,wait() returns when
the short task 2 completes, enablingmake to start task 3
immediately as in (c). On Determinator, however, the
wait() returns only when (deterministically chosen)
task 1 completes, resulting in a non-optimal schedule (d):
determinism prevents the runtime from learning which
of tasks 1 and 2 completed first. This example illustrates
the importance of separating scheduling from application
logic, as per principle 5.

3.2 A Shared File System

Unix’s globally shared file system provides a convenient
namespace and repository for staging program inputs,
storing outputs, and holding intermediate results such as
temporary files. Since our kernel permits no physical
state sharing, user-level code must emulate shared state
abstractions. Determinator’s “shared-nothing” space hi-
erarchy is similar to a distributed system consisting only
of uniprocessor machines, so our user-level runtime bor-
rows distributed file system principles to offer applica-
tions a shared file system abstraction.

Figure 4: Each process’s user-level runtime maintains an
individual replica of a logically shared file system, us-
ing file versioning to reconcile replicas at synchroniza-
tion points.

Since our current focus is on emulating familiar ab-
stractions and not on developing storage systems, Deter-
minator’s file system currently provides no persistence:
it effectively serves only as a temporary file system.

While many distributed file system designs may be ap-
plicable, our runtime uses replication with weak consis-
tency [53, 55]. Our runtime maintains a complete file
system replica in the address space of each process it
manages, as shown in Figure 4. When a process cre-
ates a child viafork(), the child inherits a copy of
the parent’s file system in addition to the parent’s open
file descriptors. Individualopen/close/read/write
operations in a process use only that process’s file sys-
tem replica, so different processes’ replicas may diverge
as they modify files concurrently. When a child termi-
nates and its parent collects its state viawait(), the
parent’s runtime copies the child’s file system image into
a scratch area in the parent space and uses file version-
ing [47] to propagate the child’s changes into the parent.

If a shell or parallelmake forks several compiler pro-
cesses in parallel, for example, each child writes its out-
put .o file to its own file system replica, then the par-
ent’s runtime merges the resulting.o files into the par-
ent’s file system as the parent collects each child’s exit
status. This copying and reconciliation is not as ineffi-
cient as it may appear, due to the kernel’s copy-on-write
optimizations. Replicating a file system image among
many spaces copies no physical pages until user-level
code modifies them, so all processes’ copies of identical
files consume only one set of pages.

As in any weakly-consistent file system, processes
may causeconflictsif they perform unsynchronized, con-
current writes to the same file. When our runtime detects
a conflict, it simply discards one copy and sets a con-
flict flag on the file; subsequent attempts toopen() the
file result in errors. This behavior is intended for batch
compute applications for which conflicts indicate an ap-
plication or build system bug, whose appropriate solu-
tion is to fix the bug and re-run the job. Interactive use
would demand a conflict handling policy that avoids los-

6

ing data. The user-level runtime could alternatively use
pessimistic locking to implement stronger consistency
and avoid unsynchronized concurrent writes, at the cost
of more inter-space communication.

The current design’s placement of each process’s file
system replica in the process’s own address space has
two drawbacks. First, it limits total file system size to
less than the size of an address space; this is a serious
limitation in our 32-bit prototype, though it may be less
of an issue on a 64-bit architecture. Second, wild pointer
writes in a buggy process may corrupt the file system
more easily than in Unix, where a buggy process must
actually callwrite() to corrupt a file. The runtime
could address the second issue by write-protecting the
file system area between calls towrite(), or it could
address both issues by storing file system data in child
spaces not used for executing child processes.

3.3 Input/Output and Logging
Since unprivileged spaces can access external I/O de-
vices only indirectly via parent/child interaction within
the space hierarchy, our user-level runtime treats I/O as
a special case of file system synchronization. In addition
to regular files, a process’s file system image can contain
specialI/O files, such as a console input file and a console
output file. Unlike Unix device special files, Determina-
tor’s I/O files actually hold data in the process’s file sys-
tem image: for example, a process’s console input file
accumulates all the characters the process has received
from the console, and its console output file contains all
the characters it has written to the console.

When a process does aread() from the console,
the C library first returns unread data already in the pro-
cess’s local console input file. When no more data is
available, instead of returning an end-of-file condition,
the process calls Ret to synchronize with its parent and
wait for more console input (or in principle any other
form of new input) to become available. When the par-
ent does await() or otherwise synchronizes with the
child, it propagates any new input it already has to the
child. When the parent has no new input for any waiting
children, it forwards all their input requests to its parent,
and ultimately to the kernel via the root process.

When a process does a consolewrite(), the run-
time appends the new data to its internal console output
file as it would append to a regular file. The next time the
process synchronizes with its parent, file system recon-
ciliation propagates these writes toward the root process,
which forwards them to the kernel’s I/O devices. A pro-
cess can request immediate synchronization and output
propagation by explicitly callingfsync().

The file system reconciliation mechanism handles
“append-only” writes differently from other file changes,
enabling processes to write concurrently to the console

or to log files without conflict. During reconciliation, if
both the parent and child process have made append-only
writes to the same file, reconciliation appends the child’s
latest writes to the parent’s copy of the file, and appends
the parent’s latest writes to the child’s copy. Each pro-
cess’s output file thus accumulates all processes’ concur-
rent writes, though different processes may observe these
writes in a different order. Unlike Unix, rerunning a par-
allel computation from the same inputs with and without
output redirection yields byte-for-byte identical console
and log file output.

3.4 Shared Memory Multithreading
Shared memory multithreading is popular despite the
nondeterminism it introduces into processes, in part be-
cause parallel code need not pack and unpack messages:
threads simply compute “in-place” on shared variables
and structures. Since Determinator gives user spaces no
physically shared memory other than read-only sharing
via copy-on-write, emulating shared memory involves
distributed shared memory (DSM) techniques.

As with file systems, there are many approaches to
DSM, but ours builds on release-consistent DSM [2,
17], which balances efficiency with programming con-
venience. Although release consistency normally makes
memory access behavior evenlessdeterministic by re-
laxing the rules of sequential consistency, we have
adapted it into a memory model we calldeterministic
consistency(DC), which we detail elsewhere [5]. DC’s
roots lie in early parallel Fortran systems [7,50], in which
all processors make private copies of shared data at the
beginning of a parallel “for” loop, then read and mod-
ify only their private “workspaces” within the loop, and
merge their results once all processors complete.

DC propagates memory changes between threads
predictably, only at program-defined synchronization
points. If one thread executes the assignment ‘x = y’
while another concurrently executes ‘y = x’, for exam-
ple, this code yields a nondeterministic data race in stan-
dard memory models, but in DC it is race-free and always
swapsx with y. DC’s semantics might simplify simu-
lations in which threads running in lock-step read and
update large arrays in-place, for example. The absence
of read/write conflicts in DC also simplifies implementa-
tion, eliminating the need to execute parallel sequences
speculatively and risk aborting and wasting effort if a de-
pendency is detected, as when deterministically emulat-
ing sequential consistency [8,9,22].

Our runtime uses the kernel’s Snap and Merge opera-
tions (Section 2.3) to emulate shared memory with deter-
ministic consistency and “fork/join” thread synchroniza-
tion. To fork a child, the parent thread calls Put with the
Copy, Snap, Regs, and Start options to copy the shared
part of its memory into a child space, save a snapshot of

7

Figure 5: A multithreaded process built from one space
per thread, with a master space managing synchroniza-
tion and memory reconciliation.

that memory state in the child, and start the child run-
ning, as illustrated in Figure 5. The master thread may
fork multiple children in parallel this way. To synchro-
nize with a child and collect its results, the parent calls
Get with the Merge option, which merges all changes the
child made to its shared address space, since the child’s
snapshot was taken, back into the parent’s space. If both
the parent and child—or the child and other children
whose changes the parent has collected—have concur-
rently modified the same shared memory byte since the
snapshot, the kernel detects and reports this write/write
conflict (which is DC’s only form of data race).

Our runtime also supports barriers, the foundation of
data-parallel programming models like OpenMP [12].
When each thread in a group arrives at a barrier, it calls
Ret to stop and wait for the parent thread managing the
group. The parent calls Get with Merge to collect each
child’s changes before the barrier, then calls Put with
Copy and Snap to resume each child with a new shared
memory snapshot containing all threads’ prior results.
While DC conceptually extends to non-hierarchical syn-
chronization patterns as well [5], such as Lisp-style fu-
tures [34], our kernel’s current strict space hierarchy nat-
urally supports only hierarchical synchronization, a lim-
itation we intend to address in the future.Anysynchro-
nization abstraction may be emulated at some cost as de-
scribed in the next section, however.

An application can choose which parts of its address
space to share and which to keep thread-private. By plac-
ing thread stacks outside the shared region, all threads
can reuse the same stack area, and the kernel wastes no
effort merging stack data. If threads wish to pass point-
ers to stack-allocated structures, however, then they may
locate their stacks in disjoint shared regions. Similarly,

md5search(unsigned char *hash, int len, int nthreads)
charbuf[len+1], output[len+1];
int done= 0, found= 0, i;
first string(&buf, len);
while (!done&& ! found)

for (i = 0; i < nthreads; i++)
next string(&buf, len, &done);
if (thread fork (i) == IN CHILD)

check md5(&buf, hash, &output, &found);
thread exit();

for (i = 0; i < nthreads; i++)
thread join (i);

Figure 6: Pseudocode for parallel “MD5 cracker.”

if the file system area is shared, then the threads share a
common file descriptor namespace as in Unix. Excluding
the file system area from shared space and using normal
file system reconciliation (Section 3.2) to synchronize it
yields thread-private file tables.

The C pseudocode in Figure 6, a simplified frag-
ment of a brute-force “MD5 cracking” benchmark
we use later in Section 5, illustrates two convenient
properties of deterministic consistency. First, since
threads can have private stacks in overlapping address
ranges,thread fork() acts like Unix’s process-level
fork(), cloning the parent’s stack into the child, so the
program need not separate the child thread’s code into
a separate function as pthreads requires. Second, the
parent thread’snext string() call updatesbuf in-
place before forking each child, whose “work function”
check md5() refers to this buffer. In a nondetermin-
istic thread model, this code contains a data race: the
parent may updatebuf for the next child before the pre-
vious child has finished reading it. Under Determinator,
however, this code is race-free: each child’s view ofbuf
remains as it was when that child was forked, until the
child explicitly callsthread exit().

3.5 Legacy Synchronization APIs

Although some synchronization abstractions naturally fit
a deterministic model, others do not. Mutex locks are
semantically nondeterministic: that they guarantee that
only one thread may own a lock at once, but allow com-
peting threads to acquire the lock in any order. Condition
variables, semaphores, and message queues allow multi-
ple threads to race to signal, post, or send, respectively,
and these events wake up any of several waiting or read-
ing threads, violating our principle 3.

For existing sequential code not yet parallelized,
we hope this code might be parallelized using nat-
urally deterministic synchronization abstractions like
data-parallel programming models such as OpenMP [12]
and SHIM [26] provide. For code already parallelized

8

using nondeterministic synchronization, however, Deter-
minator’s runtime can emulate the standard pthreads API
via deterministic scheduling [8,9,22], at certain costs.

In a process that uses nondeterministic synchroniza-
tion, the process’s initialmaster spacenever runs ap-
plication code directly, but instead runs adeterminis-
tic scheduler. This scheduler creates one child space
to run each application thread. The scheduler runs the
threads under an artificial execution schedule, emulating
a schedule by which a true shared-memory multiproces-
sor might in principle run them, but using a determinis-
tic, virtual notion of “time”—e.g., number of instructions
executed—to schedule thread interactions.

Like DMP [8, 22], our deterministic schedulerquan-
tizeseach thread’s execution by preempting it after exe-
cuting a fixed number of instructions. Whereas DMP im-
plements preemption by instrumenting user-level code,
our scheduler uses the kernel’s instruction limit feature
(Section 2.3). The scheduler “donates” execution quanta
to threads round-robin, allowing each thread to run con-
currently with other threads for one quantum, before col-
lecting the thread’s shared memory changes via Merge
and restarting it for another quantum.

A thread’s shared memory writes propagate to other
threads only at the end of each quantum, violating se-
quential consistency [41]. Like DMP-B [8], our deter-
ministic scheduler implements release consistency [31],
totally ordering only synchronization operations. To en-
force this total order, each synchronization operation
could simply spin for a a full quantum. To avoid wasteful
spinning, however, our synchronization primitives inter-
act with the deterministic scheduler directly.

Each mutex, for example, is always “owned” by some
thread, whether or not the mutex is locked. The mutex’s
owner can lock and unlock the mutex without scheduler
interactions, but any other thread needing the mutex must
first invoke the scheduler to obtain ownership. At the
current owner’s next quantum, the scheduler “steals” the
mutex from its current owner if the mutex is unlocked,
and otherwise places the locking thread on the mutex’s
queue to be awoken once the mutex is available.

Since the scheduler can preempt threads at any
point, a challenge common to any preemptive sce-
nario is making synchronization functions such as
pthread_mutex_lock() atomic. The kernel does
not allow threads to disable or extend their own instruc-
tion limits, since we wish to use instruction limits at pro-
cess level as well, e.g., to enforce deterministic “time”
quotas on untrusted processes, or to improve user-level
process scheduling (see Section 3.1) by quantizing pro-
cess execution. After synchronizing with a child thread,
therefore, the master space checks whether the instruc-
tion limit preempted a synchronization function, and if
so, resumes the preempted code in the master space. Be-

fore returning to the application, these functions check
whether they have been “promoted” to the master space,
and if so migrate their register state back to the child
thread and restart the scheduler in the master space.

While deterministic scheduling provides compatibility
with existing parallel code, it has drawbacks. The master
space, required to enforce a total order on synchroniza-
tion operations, may be a scaling bottleneck unless exe-
cution quanta are large. Since threads can interact only
at quanta boundaries, however, large quanta increase the
time one thread may waste waiting for another, to steal
an unlocked mutex for example.

Further, since the deterministic scheduler may pre-
empt a thread and propagate shared memory changes at
any point in application code, theprogramming model
remains nondeterministic. If one thread runs ‘x = y’
while another runs ‘y = x’, the result may berepeatable
but is no morepredictableto the programmer than on tra-
ditional systems—in contrast with the previous section’s
multithreading model. While rerunning a program with
exactlyidentical inputs will yield identical results, if the
input is perturbed to change the length of any instruction
sequence, these changes may cascade into a different ex-
ecution schedule and triggerschedule-dependentif not
timing-dependent heisenbugs.

4 Prototype Implementation
Determinator is implemented in C with small assembly
fragments, runs on the 32-bit x86 architecture, and im-
plements the kernel API and user-level runtime facilities
described above. Source code is available on request.

Since our focus is on parallel compute-bound applica-
tions, Determinator’s I/O capabilities are currently lim-
ited. The system provides text-based console I/O and a
Unix-style shell supporting redirection and both scripted
and interactive use. The shell offers no interactive job
control, which would require currently unimplemented
“nondeterministic privileges” (Section 3.1). The system
has no demand paging or persistent disk storage: the
user-level runtime’s logically shared file system abstrac-
tion currently operates in physical memory only.

The kernel supports application-transparent space mi-
gration among up to 32 machines in a cluster, as de-
scribed in Section 2.5. Migration uses a synchronous
messaging protocol with only two request/response types
and implements almost no optimizations such as page
prefetching. The protocol runs directly atop Ethernet,
and is not intended for Internet-wide distribution.

Implementing instruction limits (Section 2.3) requires
the kernel to recover control after a precise number of
instructions execute in user mode. While the PA-RISC
architecture provided this feature [1], the x86 does not,
so we borrowed ReVirt’s technique [23]. We first set an
imprecisehardware performance counter, which unpre-

9

dictably overshoots its target a small amount, to interrupt
the CPU before the desired number of instructions, then
run the remaining instructions under debug tracing.

5 Evaluation
This section evaluates the Determinator prototype, first
informally, then examining single-node and distributed
parallel processing performance, and finally code size.

5.1 Experience Using the System
We find that a deterministic programming model sim-
plifies debugging of both applications and user-level
runtime code, since user-space bugs are always repro-
ducible. Conversely, when we do observe nondetermin-
istic behavior, it can result only from a kernel (or hard-
ware) bug, immediately limiting the search space.

Because Determinator’s file system holds a process’s
output until the next synchronization event (often the
process’s termination), each process’s output appears
as a unit even if the process executes in parallel with
other output-generating processes. Further, different pro-
cesses’ outputs appear in a consistent order across runs,
as if run sequentially. (The kernel provides a system call
for debugging that outputs a line to the “real” console im-
mediately, reflecting true execution order, but chaotically
interleaving output like standard systems.)

While race detection tools exist [27, 45], we found it
convenient that Determinator detects races all the time
under “normal-case” execution, without requiring the
user to run a special tool. Since the kernel detects shared
memory conflicts and the user-level runtime detects file
system conflicts at every synchronization event, Deter-
minator’s model makes race detection as standard as de-
tecting division by zero or illegal memory accesses.

A subset of Determinator doubles asPIOS, “Paral-
lel Instructional Operating System,” which we used in
Yale’s operating system course this spring. While the
OS course’s objectives did not include determinism, they
included introducing students to parallel, multicore, and
distributed operating system concepts. For this purpose,
we found Determinator/PIOS to be a useful instructional
tool due to its simple design, minimal kernel API, and
adoption of distributed systems techniques within and
across physical machines. PIOS is partly derived from
MIT’s JOS [37], and includes a similar instructional
framework where students fill in missing pieces of a
“skeleton.” The twelve students who took the course,
working in groups of two or three, all successfully reim-
plemented Determinator’s core features: multiproces-
sor scheduling with Get/Put/Ret coordination, virtual
memory with copy-on-write and Snap/Merge, user-level
threads with fork/join synchronization (but not determin-
istic scheduling), the user-space file system with ver-
sioning and reconciliation, and application-transparent

Figure 7: Determinator performance relative to Linux on
various parallel benchmarks.

cross-node distribution via space migration. In their fi-
nal projects they extended the OS with features such as
graphics, pipes, and a remote shell. While instructional
use is by no means indicates a system’s real-world utility,
we find the success of the students in understanding and
building on Determinator’s architecture promising.

5.2 Single-node Multicore Performance
Since Determinator runs user-level code “natively” on
the hardware instead of rewriting user code [8, 22], we
expect it to perform comparably to conventional systems
when executing single-threaded, compute-bound code.
Since space interactions require system calls, context
switches, and virtual memory operations, however, we
expect determinism to incur a performance cost in pro-
portion to the amount of interaction between spaces.

Figure 7 shows the performance of several shared-
memory parallel benchmarks we ported, relative to the
same benchmarks running on the 32-bit version of
Ubuntu Linux 9.10. Themd5 benchmark searches for
an ASCII string yielding a particular MD5 hash, as in
a brute-force password cracker;matmultmultiplies two
1024×1024 integer matrices;qsortperforms a recursive
parallel quicksort on an integer array;blackscholesis a fi-
nancial benchmark from the PARSEC suite [11]; andfft,
lu cont, andlu noncontare Fast Fourier Transform and
LU-decomposition benchmarks from SPLASH-2 [56].
We tested all benchmarks on a 2 socket× 6 core, 2.2GHz
AMD Opteron PC.

Coarse-grained benchmarks likemd5, matmult, qsort,
blackscholes, andfft show performance comparable with
that of nondeterministic multithreaded execution under
Linux. Themd5benchmark shows better scaling on De-
terminator than on Linux, achieving a2.25× speedup
over Linux on 12 cores. We have not identified the pre-
cise cause of this speedup over Linux but suspect scaling
bottlenecks in Linux’s thread system [54].

Porting theblackscholesbenchmark to Determinator
required no changes as it uses deterministically sched-
uled pthreads (Section 3.5). The deterministic sched-
uler’s quantization, however, incurs a fixed performance
cost of about 35% for the chosen quantum of 10 million
instructions. We could reduce this overhead by increas-

10

Figure 8: Determinator parallel speedup over single-
CPU performance on various benchmarks.

Figure 9: Matrix multiply with varying matrix size.

ing the quantum, or eliminate it by porting the bench-
mark to Determinator’s “native” parallel API.

The fine-grainedlu benchmarks show a higher per-
formance cost, indicating that Determinator’s virtual
memory-based approach to enforcing determinism is not
well-suited to fine-grained parallel applications. Future
hardware enhancements might make determinism practi-
cal for fine-grained parallel applications, however [22].

Figure 8 shows each benchmark’s speedup relative to
single-threaded execution on Determinator. The “embar-
rassingly parallel”md5andblackscholesscale well,mat-
mult andfft level off after four processors (but still per-
form comparably to Linux as Figure 7 shows), and the
remaining benchmarks scale poorly.

To quantify further the effect of parallel interaction
granularity on deterministic execution performance, Fig-
ures 9 and 10 show Linux-relative performance ofmat-
mult andqsort, respectively, for varying problem sizes.
With both benchmarks, deterministic execution incurs a
high performance cost on small problem sizes requiring
frequent interaction, but on large problems Determinator
is competitive with and sometimes faster than Linux.

5.3 Distributed Computing Performance

While Determinator’s rudimentary space migration (Sec-
tion 2.5) is far from providing a full cluster comput-
ing architecture, we would like to test whether such a
mechanism can extend a deterministic computing model
across nodes with usable performance at least for some
applications. We therefore changed themd5 and mat-
mult benchmarks to distribute workloads across a clus-
ter of up to 32 uniprocessor nodes via space migration.

Figure 10: Parallel quicksort with varying array size.

Figure 11: MD5 benchmark on varying-size clusters.

Both benchmarks still run in a (logical) shared memory
model via Snap/Merge. Since we did not have a clus-
ter on which we could run Determinator natively, we ran
it under QEMU [6], on a cluster of 2 socket× 2 core,
2.4GHz Intel Xeon machines running SuSE Linux 11.1.

Figure 11 shows parallel speedup under Determinator
relative to local single-node execution in the same envi-
ronment, on a log-log scale. Inmd5-circuit, the master
space acts like a traveling salesman, migrating serially to
each “worker” node to fork child processes, then retrac-
ing the same circuit to collect their results. Themd5-tree
variation forks workers recursively in a binary tree: the
master space forks children on two nodes, those children
each fork two children on two nodes, etc. Thematmult-
treebenchmark implements matrix multiply with recur-
sive work distribution as inmd5-tree.

The “embarrassingly parallel”md5-treeperforms and
scales well, but only with recursive work distribution.
Matrix multiply levels off at two nodes, due to the
amount of matrix data the kernel transfers across nodes
via its simplistic page copying protocol, which currently
performs no data streaming, prefetching, or delta com-
pression. The slowdown for 1-node distributed execution
in matmult-treereflects the cost of transferring the matrix
to a (single) remote machine for processing.

Figure 12 shows that the shared memorymd5-tree
and matmult-treebenchmarks, running on Determina-
tor, perform comparably to nondeterministic, distributed-
memory equivalents running on Puppy Linux 4.3.1, in
the same QEMU environment. The Determinator version
of md5is 63% the size of the Linux version (62 lines con-

11

Figure 12: Deterministic, shared-memory MD5 bench-
mark compared with a nondeterministic, distributed-
memory Linux implementation.

Determinator PIOS
Component Semicolons Semicolons
Kernel core 2044 1847
Hardware/device drivers 751 647
User-level runtime 2952 1079
Generic C library code 6948 394
User-level programs 1797 1418
Total 14,492 5385

Table 3: Implementation code size of the Determinator
OS and of PIOS, its instructional subset.

taining semicolons versus 99), which uses remote shells
to coordinate workers. The Determinator version ofmat-
mult is 34% the size of its Linux equivalent (90 lines ver-
sus 263), which passes data via TCP.

5.4 Implementation Complexity
To provide a feel for implementation complexity, Table 3
shows source code line counts for Determinator, as well
as its PIOS instructional subset, counting only lines con-
taining semicolons. The entire system is less than 15,000
lines, about half of which is generic C and math library
code needed mainly for porting Unix applications easily.

6 Related Work
The benefits of deterministic programming models are
well-known [13, 43]. Recognizing these benefits, paral-
lel languages such as SHIM [25, 26, 52] and DPJ [13,
14] enforce determinism at language level, but cannot
run legacy or multi-process parallel code. Race detec-
tors [27, 45] can detect heisenbugs in nondeterministic
parallel programs, but may miss heisenbugs resulting
from higher-level order dependencies [3]. Language ex-
tensions can dynamically check determinism assertions
in parallel code [16, 48], but heisenbugs may persist if
the programmer omits an assertion. Only a deterministic
environment prevents heisenbugs in the first place.

Application-level deterministic schedulers such as
DMP [22], Grace [9], and CoreDet [8] instrument an ap-
plication process to isolate threads’ memory accesses,
and run the threads on an artificial, deterministic exe-
cution schedule. DMP and CoreDet isolate threads via
code rewriting, while Grace uses virtual memory tech-

niques as in Determinator. Since these schedulers run in
the same process as the application itself, bugs or ma-
licious code can violate determinism by corrupting the
scheduler, as the authors acknowledge. Determinator’s
kernel-enforced model ensures repeatability of arbitrary
code in both multithreaded and multi-process computa-
tions. Determinator’s user-level runtime also develops
deterministic versions of OS abstractions such as shared
file systems, which lie outside the domain of application-
level deterministic schedulers.

DMP and Grace emulate sequential consistency [41]
by running parallel tasks speculatively, detecting
read/write dependencies between tasks, and re-executing
tasks serially on detecting a dependency. DMP-B [8]
relaxes memory consistency to optimize parallel execu-
tion, but still emulates a nondeterministic programming
model where writes propagate between threads at arbi-
trary points unpredictable to the developer. Determinator
combines ideas from early parallel Fortran systems [7,
50] with release consistency [2, 17, 31, 39] to develop a
“naturally deterministic” programming model [5]. In this
model, read/write conflicts do not exist (only write/write
conflicts), and shared memory or file changes propa-
gate among concurrent threads or processesonly at ex-
plicit synchronization points. While focusing on this de-
terministic programming model, Determinator’s runtime
can emulate nondeterministic models via deterministic
scheduling to run legacy parallel code.

Many techniques are available for logging and replay-
ing nondeterministic events in parallel applications [21,
28, 42, 46]. SMP-ReVirt can log and replay a multi-
processor virtual machine [24], supporting uses such as
system-wide intrusion analysis [23, 36] and replay de-
bugging [40]. Logging a parallel system’s nondetermin-
istic events is costly in performance and storage space,
however, and usually infeasible for “normal-case” ex-
ecution. Determinator demonstrates the feasibility of
providing system-enforced determinism for normal-case
execution, without internal event logging, while main-
taining performance comparable with current systems at
least for coarse-grained parallel applications.

Transactional memory (TM) [35, 51] isolate threads’
writes from each other between transaction start and
commit/abort. TM offers no deterministic ordering be-
tween transactions, however: like mutex locks, transac-
tions guarantee only atomicity, not determinism.

7 Conclusion
Determinator is only a first step towards making deter-
ministic execution readily available and broadly usable
for normal-case execution of parallel applications. Nev-
ertheless, our experiments suggest that, with appropri-
ate kernel and user-level runtime designs, it is possible
to provide system-enforced deterministic execution effi-

12

ciently at least for coarse-grained parallel applications,
both on a single multicore machine and across a cluster.

References
[1] PA-RISC 1.1 Architecture and Instruction Set Ref-

erence Manual. Hewlett-Packard, third edition,
Feb. 1994.

[2] C. Amza et al. TreadMarks: Shared memory com-
puting on networks of workstations.IEEE Com-
puter, 29(2):18–28, Feb. 1996.

[3] C. Artho, K. Havelund, and A. Biere. High-level
data races. InVVEIS, pages 82–93, Apr. 2003.

[4] A. Aviram and B. Ford. Determinating timing chan-
nels in statistically multiplexed clouds, Mar. 2010.
http://arxiv.org/abs/1003.5303.

[5] A. Aviram and B. Ford. Determinis-
tic consistency: A programming model
for shared memory parallelism, Feb. 2010.
http://arxiv.org/abs/0912.0926.

[6] F. Bellard. QEMU, a fast and portable dynamic
translator, Apr. 2005.

[7] M. Beltrametti, K. Bobey, and J. R. Zorbas.
The control mechanism for the Myrias parallel
computer system. Computer Architecture News,
16(4):21–30, Sept. 1988.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: A compiler and runtime
system for deterministic multithreaded execution.
In 15th ASPLOS, Mar. 2010.

[9] E. D. Berger, T. Yang, T. Liu, and G. No-
vark. Grace: Safe multithreaded programming for
C/C++. InOOPSLA, Oct. 2009.

[10] B. N. Bershad et al. Extensibility, safety and per-
formance in the SPIN operating system. In15th
SOSP, 1995.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In17th International
Conference on Parallel Architectures and Compi-
lation Techniques, October 2008.

[12] O. A. R. Board. OpenMP application pro-
gram interface version 3.0, May 2008.
http://www.openmp.org/mp-documents/spec30.pdf.

[13] R. L. Bocchino Jr., V. S. Adve, S. V. Adve, and
M. Snir. Parallel programming must be determinis-
tic by default. In1st HotPar. Mar. 2009.

[14] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Sim-
mons, H. Sung, and M. Vakilian. A type and effect

system for Deterministic Parallel Java. Oct. 2009.
http://dpj.cs.uiuc.edu/DPJ/Publications_files/pape

[15] T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault-tolerance.TOCS, 14(1):80–107, Feb.
1996.

[16] J. Burnim and K. Sen. Asserting and checking
determinism for multithreaded programs. InFSE,
Aug. 2009.

[17] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Im-
plementation and performance of munin. In13th
SOSP, Oct. 1991.

[18] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In3rd OSDI, pages 173–186, Feb. 1999.

[19] T. Chiueh, G. Venkitachalam, and P. Pradhan. In-
tegrating segmentation and paging protection for
safe, efficient and transparent software extensions.
In 17th SOSP, pages 140–153, Dec. 1999.

[20] J.-D. Choi and H. Srinivasan. Deterministic replay
of Java multithreaded applications. InSPDT ’98:
Proceedings of the SIGMETRICS symposium on
Parallel and distributed tools, pages 48–59. 1998.

[21] R. S. Curtis and L. D. Wittie. BugNet: A debugging
system for parallel programming environments. In
3rd ICDCS, pages 394–400, Oct. 1982.

[22] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
Deterministic shared memory multiprocessing. In
14th ASPLOS, Mar. 2009.

[23] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling intrusion analy-
sis through virtual-machine logging and replay. In
5th OSDI, Dec. 2002.

[24] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,
and P. M. Chen. Execution replay for multiproces-
sor virtual machines. InVEE, Mar. 2008.

[25] S. A. Edwards and O. Tardieu. Shim: A determin-
istic model for heterogeneous embedded systems.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(8):854–867, Aug. 2006.

[26] S. A. Edwards, N. Vasudevan, and O. Tardieu. Pro-
gramming shared memory multiprocessors with de-
terministic message-passing concurrency: Compil-
ing SHIM to Pthreads. InDATE, Mar. 2008.

[27] D. Engler and K. Ashcraft. RacerX: effective, static
detection of race conditions and deadlocks. In19th
SOSP, Oct. 2003.

[28] S. I. Feldman and C. B. Brown. IGOR: A sys-
tem for program debugging via reversible execu-
tion. In Workshop on Parallel & Distributed De-
bugging, pages 112–123, May 1988.

13

http://arxiv.org/abs/1003.5303
http://arxiv.org/abs/0912.0926
http://www.openmp.org/mp-documents/spec30.pdf
http://dpj.cs.uiuc.edu/DPJ/Publications_files/paper_1.pdf

[29] B. Ford, M. Hibler, J. Lepreau, P. Tullmann,
G. Back, and S. Clawson. Microkernels meet re-
cursive virtual machines. In2nd OSDI, pages 137–
151, 1996.

[30] T. Garfinkel, K. Adams, A. Warfield, and
J. Franklin. Compatibility is not transparency:
VMM detection myths and realities. InHotOS-XI,
May 2007.

[31] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-
bons, A. Gupta, and J. Hennessy. Memory con-
sistency and event ordering in scalable shared-
memory multiprocessors. In17th ISCA, pages 15–
26, May 1990.

[32] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications. In6th USENIX Security Symposium,
1996.

[33] A. Haeberlen, P. Kouznetsov, and P. Druschel.
PeerReview: Practical accountability for dis-
tributed systems. In21st SOSP, Oct. 2007.

[34] R. H. Halstead, Jr. Multilisp: A language for con-
current symbolic computation.TOPLAS, 7(4):501–
538, Oct. 1985.

[35] M. Herlihy and J. E. B. Moss. Transactional mem-
ory: Architectural support for lock-free data struc-
tures. In20th ISCA, pages 289–300, May 1993.

[36] A. Joshi, S. T. King, G. W. Dunlap, and P. M.
Chen. Detecting past and present intrusions
through vulnerability-specific predicates. InSOSP
’05: Proceedings of the twentieth ACM sympo-
sium on Operating systems principles, pages 91–
104. 2005.

[37] F. Kaashoek et al. 6.828:
Operating system engineering.
http://pdos.csail.mit.edu/6.828/.

[38] G. Kahn. The semantics of a simple language for
parallel programming. InInformation Processing,
pages 471–475. 1974.

[39] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. InISCA, pages 13–21, May 1992.

[40] S. T. King, G. W. Dunlap, and P. M. Chen. Debug-
ging operating systems with time-traveling virtual
machines. InUSENIX, pages 1–15, Apr. 2005.

[41] L. Lamport. How to make a multiproces-
sor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
28(9):690–691, Sept. 1979.

[42] T. J. Leblanc and J. M. Mellor-Crummey. De-
bugging parallel programs with instant replay.

IEEE Transactions on Computers, C-36(4):471–
482, Apr. 1987.

[43] E. Lee. The problem with threads.Computer,
39(5):33–42, May 2006.

[44] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes — a comprehensive study on real world
concurrency bug characteristics. In13th ASPLOS,
pages 329–339, Mar. 2008.

[45] M. Musuvathi, S. Qadeer, T. Ball, and G. Basler.
Finding and reproducing heisenbugs in concurrent
programs. InProceedings of the 8th USENIX Sym-
posium on Operating System Design and Imple-
mentation (OSDI ’08), pages 267–280. 2008.

[46] D. Z. Pan and M. A. Linton. Supporting reverse
execution of parallel programs. InPADD ’88, pages
124–129. 1988.

[47] D. S. Parker, Jr. et al. Detection of mutual inconsis-
tency in distributed systems.IEEE Transactions on
Software Engineering, SE-9(3), May 1983.

[48] C. Sadowski, S. N. Freund, and C. Flanagan. Sin-
gleTrack: A dynamic determinism checker for mul-
tithreaded programs. In18th ESOP, Mar. 2009.

[49] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
Technical Report 86-800, Cornell University, Jan.
1990.

[50] J. T. Schwartz. The burroughs FMP machine, Jan.
1980. Ultracomputer Note #5.

[51] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, 10(2):99–116,
Feb. 1997.

[52] O. Tardieu and S. A. Edwards. Scheduling-
independent threads and exceptions in SHIM. In
EMSOFT, pages 142–151, Oct. 2006.

[53] D. B. Terry et al. Managing update conflicts in
Bayou, a weakly connected replicated storage sys-
tem. In15th SOSP, 1995.

[54] R. von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer. Capriccio: Scalable threads for in-
ternet services. InSOSP’03.

[55] B. Walker, G. Popek, R. English, C. Kline, and
G. Thiel. The LOCUS distributed operating sys-
tem. SIGOPS Operating Systems Review, 17(5),
Oct. 1983.

[56] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characteri-
zation and methodological considerations. In22nd
ISCA, pages 24–36, June 1995.

14

http://pdos.csail.mit.edu/6.828/

	1 Introduction
	2 The Determinator Kernel
	2.1 Kernel API Design Principles
	2.2 Spaces
	2.3 System Call API
	2.4 Reasoning about Determinism
	2.5 Distribution via Space Migration

	3 Emulating High-Level Abstractions
	3.1 Processes and fork/exec/wait
	3.2 A Shared File System
	3.3 Input/Output and Logging
	3.4 Shared Memory Multithreading
	3.5 Legacy Synchronization APIs

	4 Prototype Implementation
	5 Evaluation
	5.1 Experience Using the System
	5.2 Single-node Multicore Performance
	5.3 Distributed Computing Performance
	5.4 Implementation Complexity

	6 Related Work
	7 Conclusion

