
Copyright © 2008-2009 VMware, Inc. All rights reserved. 1

Performance Evaluation of AMD RVI Hardware Assist

Performance Evaluation of AMD RVI
Hardware Assist
VMware ESX 3.5

Introduction
For the majority of common workloads, performance in a virtualized environment is close to that in a native
environment. Virtualization does create some overheads, however. These come from the virtualization of the
CPU, the MMU (Memory Management Unit), and the I/O devices. In some of their recent x86 processors AMD
and Intel have begun to provide hardware extensions to help bridge this performance gap. In 2006, both
vendors introduced their first-generation hardware support for x86 virtualization with AMD-Virtualization™
(AMD-V™) and Intel® VT-x technologies. Recently AMD introduced its second generation of hardware
support that incorporates MMU virtualization, called Rapid Virtualization Indexing (RVI).

We evaluated RVI performance by comparing it to the performance of our software-only shadow page table
technique on an RVI-enabled AMD system. From our studies we conclude that RVI-enabled systems can
improve performance compared to using shadow paging for MMU virtualization. RVI provides performance
gains of up to 42% for MMU-intensive benchmarks and up to 500% for MMU-intensive microbenchmarks. We
have also observed that although RVI increases memory access latencies for a few workloads, this cost can be
reduced by effectively using large pages in the guest and the hypervisor.

Background
Prior to the introduction of hardware support for virtualization, the VMware® virtual machine monitor
(VMM) used software techniques for virtualizing x86 processors. We used binary translation (BT) for
instruction set virtualization, shadow paging for MMU virtualization, and device emulation for device
virtualization.

With the advent of AMD-V in 2006 the VMM could use BT or AMD-V for instruction set virtualization on
AMD processors, depending on which technology had better performance for a specific guest/CPU
configuration. Due to the lack of hardware support for MMU virtualization in older CPUs, the VMM still used
shadow paging for MMU virtualization. The shadow page tables stored information about the physical
location of guest memory. Under shadow paging, in order to provide transparent MMU virtualization the
VMM intercepted guest page table updates to keep the shadow page tables coherent with the guest page
tables. This caused some overhead in the virtual execution of those applications for which the guest had to
frequently update its page table structures.

With the introduction of RVI, the VMM can now rely on hardware to eliminate the need for shadow page
tables. This removes much of the overhead otherwise incurred to keep the shadow page tables up-to-date. We
describe these various paging methods in more detail in the next section and describe our experimental
methodologies, benchmarks, and results in subsequent sections. Finally, we conclude by providing a summary
of our performance experience with RVI.

Copyright © 2008-2009 VMware, Inc. All rights reserved. 2

Performance Evaluation of AMD RVI Hardware Assist

MMU Architecture and Performance
In a native system the operating system maintains a mapping of logical page numbers (LPNs) to physical page
numbers (PPNs) in page table structures (see Figure 1). When a logical address is accessed, the hardware walks
these page tables to determine the corresponding physical address. For faster memory access the x86 hardware
caches the most recently used LPN->PPN mappings in its translation lookaside buffer (TLB).

Figure 1. Native System Memory Management Unit Diagram

In a virtualized system the guest operating system maintains page tables just as the operating system in a
native system does, but in addition the VMM maintains a mapping of PPNs to machine page numbers
(MPNs), as described in the following two sections, “Software MMU” and “Hardware MMU.”

Software MMU
In shadow paging the VMM maintains PPN->MPN mappings in its internal data structures and stores
LPN->MPN mappings in shadow page tables that are exposed to the hardware (see Figure 2). The most
recently used LPN->MPN translations are cached in the hardware TLB. The VMM keeps these shadow page
tables synchronized to the guest page tables. This synchronization introduces virtualization overhead when
the guest updates its page tables.

Figure 2. Shadow Page Tables Diagram

Process 1 Process 2

Logical
Pages

Physical
Pages

Virtual Machine #1 Virtual Machine #2

Logical
Pages

Physical
Pages

Machine
Pages

Process 1 Process 2Process 2Process 1

Shadow Page Table
Entry

Copyright © 2008-2009 VMware, Inc. All rights reserved. 3

Performance Evaluation of AMD RVI Hardware Assist

Hardware MMU
Using RVI, the guest operating system continues to maintain LPN->PPN mappings in the guest page tables,
but the VMM maintains PPN->MPN mappings in an additional level of page tables, called nested page tables
(see Figure 3). In this case both the guest page tables and the nested page tables are exposed to the hardware.

When a logical address is accessed, the hardware walks the guest page tables as in the case of native execution,
but for every PPN accessed during the guest page table walk, the hardware also walks the nested page tables
to determine the corresponding MPN. This composite translation eliminates the need to maintain shadow
page tables and synchronize them with the guest page tables. However the extra operation also increases the
cost of a page walk, thereby impacting the performance of applications that stress the TLB. This cost can be
reduced by using large pages, thus reducing the stress on the TLB for applications with good spatial locality.
For optimal performance the ESX VMM and VMkernel aggressively try to use large pages for their own
memory when RVI is used.

Figure 3. Hardware Memory Management Unit Diagram

Virtual Machine #1 Virtual Machine #2

Logical
Pages

Physical
Pages

Machine
Pages

Process 1 Process 2Process 1 Process 2

Copyright © 2008-2009 VMware, Inc. All rights reserved. 4

Performance Evaluation of AMD RVI Hardware Assist

Experimental Methodology
This section describes the experimental configuration and the benchmarks used in this study.

Hardware
Dell PowerEdge 2970

CPUs: Two Quad-Core AMD Opteron™ 8384 Processors (“Shanghai”)

RAM: 32GB

Networking: Two Broadcom BCM5708C NetXtreme II GbE controllers

Storage controller: Dell PowerEdge PERC 5/i SAS RAID controller

Disks: Six 7200 RPM 160GB Seagate Barracuda SAS hard drives (7200.7 ST3160023AS)

Virtualization Software
These experiments were performed with VMware ESX 3.5, Update 2. The tests in this study show performance
differences between the BT VMM and the RVI VMM as a way of comparing shadow paging with RVI. We
compared the RVI VMM to the BT VMM instead of to an AMD-V VMM without RVI because ESX 3.5 supports
AMD-V only with RVI.

Benchmarks
In this study we used various benchmarks that to varying degrees stress MMU-related components in both
software and hardware. These include:

Kernel Microbenchmarks: A benchmark suite for system software performance analysis.

Apache Compile: compiling and building an Apache web server.

SPECjbb®2005: An industry standard server-side Java benchmark.

SQL Server Database Hammer: A database workload that uses Microsoft SQL Server on the backend.

Citrix XenApp: A workload that exports client sessions along with configured applications.

We ran these benchmarks in 64-bit virtual machines with a combination of Windows and Linux guest
operating systems. Table 1 details the guest operating system used for each of these benchmarks.

It is important to understand the performance implications of RVI as we scale up the number of virtual
processors in a virtual machine. We therefore ran some of the benchmarks in multiprocessor virtual machines.

Table 1. Guest Operating Systems Used for Benchmarks

Benchmark Operating System

Kernel Microbenchmarks 64-bit Red Hat Enterprise Linux 5, Update 1

Apache Compile 64-bit Red Hat Enterprise Linux 5, Update 1

SPECjbb2005 64-bit Windows Server 2008

SQL Server Database Hammer 64-bit Windows Server 2008

Citrix XenApp 64-bit Windows Server 2003

Copyright © 2008-2009 VMware, Inc. All rights reserved. 5

Performance Evaluation of AMD RVI Hardware Assist

Experiments
In this section, we describe the performance of RVI as compared with shadow paging for the workloads
mentioned in the previous section.

MMU-Intensive Kernel Microbenchmarks
Kernel microbenchmarks comprise a suite of benchmarks that stress different subsystems of the operating
system. These microbenchmarks are not representative of application performance; however they are useful
for amplifying the performance impact of different subsystems so that they can be more easily studied.They
can be broadly divided into system-call intensive benchmarks and MMU-intensive benchmarks. In our
experiments we found that system-call intensive benchmarks performed equivalently with and without RVI
enabled (for brevity these results are not included in this paper). However, with RVI enabled we observed
gains of up to 500% on MMU-intensive microbenchmarks. Figure 4 shows the results for the following kernel
microbenchmarks:

segv: A C program that measures the processor fault-handling overhead in Linux by repeatedly
generating and handling page faults.

pcd: A C program that measures Linux process creation and destruction time under a pre-defined number
of executing processes on the system.

nps: A C program that measures the Linux process-switching overhead.

fw: A C program that measures Linux process-creation overhead by forking processes and waiting for
them to complete.

Figure 4. MMU-Intensive Kernel Microbenchmark Results (Lower is Better)

1.00 1.00 1.00 1.00

0.34

0.21

0.31

0.17

0.0

0.2

0.4

0.6

0.8

1.0

1.2

segv pcd nps fw

Kernel Microbenchmark

T
im

e
(N

o
rm

al
iz

ed
 to

 B
T

)

BT

RVI

Copyright © 2008-2009 VMware, Inc. All rights reserved. 6

Performance Evaluation of AMD RVI Hardware Assist

Apache Compile
The Apache compile workload compiles and builds the Apache web server. This particular application is at an
extreme of compilation workloads in that it is comprised of many small files. As a result many short-lived
processes are created as each file is compiled. This behavior causes intensive MMU activity, similar to the
MMU-intensive kernel microbenchmarks, and thus benefits greatly from RVI, as shown in Figure 5. The
improvement provided by RVI increases with larger numbers of vCPUs; in the four vCPU case RVI performed
42% better than BT.

Figure 5. Apache Compile Time (Lower is Better)

1.00

0.66

0.52

0.70

0.43

0.30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 vCPU 2 vCPUs 4 vCPUs

Number of Virtual CPUs

T
im

e
(N

o
rm

al
iz

ed
 to

 1
 v

C
P

U
 B

T
) BT

RVI

Copyright © 2008-2009 VMware, Inc. All rights reserved. 7

Performance Evaluation of AMD RVI Hardware Assist

SPECjbb2005
SPECjbb2005 is an industry-standard server-side Java benchmark. It has little MMU activity but exhibits high
TLB miss activity due to Java's usage of the heap and associated garbage collection. Modern x86 operating
system vendors provide large page support to enhance the performance of such TLB-intensive workloads.
Because RVI further increases the TLB miss latency (due to additional paging levels), large page usage in the
guest operating system is imperative for high performance of such applications in an RVI-enabled virtual
machine, as shown in Figure 6.

Figure 6. SPECjbb2005 Results (Higher is Better)

1.00

2.92

0.88

2.66

1.22

3.57

1.25

3.70

0

1

2

3

4

1 vCPU 4 vCPUs

Number of Virtual CPUs

BT (Small pages)

RVI (Small pages)

BT (Large pages)

RVI (Large pages)

B
u

si
n

es
s

O
p

er
at

io
n

s
p

er
 S

ec
o

n
d

(N

o
rm

al
iz

ed
 to

 1
 v

C
P

U
 B

T
 (s

m
al

l p
ag

es
))

Copyright © 2008-2009 VMware, Inc. All rights reserved. 8

Performance Evaluation of AMD RVI Hardware Assist

SQL Server Database Hammer
Database Hammer is a database workload for evaluating Microsoft SQL Server database performance. As
shown in Figure 7, we observed that Database Hammer with lower vCPU counts is not MMU intensive,
resulting in similar performance with and without RVI. However as we scale up the number of vCPUs we do
see some MMU activity, thereby favoring RVI. We configured the guest to use large pages for all our Database
Hammer runs.

Figure 7. SQL Server Database Hammer Results (Higher is Better)

1.00

2.04

4.24

1.04

2.28

4.78

0

1

2

3

4

5

1 vCPU 2 vCPUs 4 vCPUs

Number of Virtual CPUs

T
ra

n
sa

ct
io

n
s

p
er

 S
ec

o
n

d
(N

o
rm

al
iz

ed
 to

 1
 v

C
P

U
 B

T
) BT

RVI

Copyright © 2008-2009 VMware, Inc. All rights reserved. 9

Performance Evaluation of AMD RVI Hardware Assist

Citrix XenApp
Citrix XenApp is a presentation server or application session provider that enables its clients to connect and
run their favorite personal desktop applications. To run Citrix, we used the Citrix Server Test Kit (CSTK) 2.1
workload generator for simulating users. Each user was configured as a normal user running the Microsoft
Word workload from Microsoft Office 2000. This workload requires about 70MB of physical RAM per user.
Due to heavy process creation and inter-process switching, Citrix is an MMU-intensive workload. As shown
in Figure 8, we observed that RVI provided a boost of approximately 29%.

Figure 8. Citrix XenApp Results (Higher is Better)

1.29

1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 vCPU

Number of Virtual CPUs

N
u

m
b

er
 o

f C
o

n
cu

rr
en

t U
se

rs
(N

o
rm

al
iz

ed
 to

 1
 v

C
P

U
 B

T
)

BT

RVI

10

Performance Evaluation of AMD RVI Hardware Assist

If you have comments about this documentation, submit your feedback to: docfeedback@vmware.com

Author: Nikhil Bhatia

VMware, Inc. 3401 Hillview Ave., Palo Alto, CA 94304 www.vmware.com
Copyright © 2008-2009 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242, 6,496,847, 6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886,
6,789,156, 6,795,966, 6,880,022, 6,944,699, 6,961,806, 6,961,941, 7,069,413, 7,082,598, 7,089,377, 7,111,086, 7,111,145, 7,117,481, 7,149, 843, 7,155,558, 7,222,221, 7,260,815,
7,260,820, 7,269,683, 7,275,136, 7,277,998, 7,277,999, 7,278,030, 7,281,102, 7,290,253, 7,356,679, 7,409,487, 7,412,492, 7,412,702, 7,424,710, 7,428,636, 7,433,951, and 7,434,002;
patents pending. SPEC® and the benchmark name SPECjbb® are registered trademarks of the Standard Performance Evaluation Corporation. VMware, the VMware “boxes” logo
and design, Virtual SMP, and VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies.

Revision: 20090311; Item: EN-000147-01

Conclusion
AMD RVI-enabled CPUs offload a significant part of the VMM's MMU virtualization responsibilities to the
hardware, resulting in higher performance. Results of experiments done on this platform indicate that the
current VMware VMM leverages these features quite well, resulting in performance gains of up to 42% for
MMU-intensive benchmarks and up to 500% for MMU-intensive microbenchmarks.

We recommend that TLB-intensive workloads make extensive use of large pages to mitigate the higher cost of
a TLB miss.

mailto:docfeedback@vmware.com

	Introduction
	Background
	Software MMU
	Hardware MMU
	Hardware
	Virtualization Software
	Benchmarks
	MMU-Intensive Kernel Microbenchmarks
	Apache Compile
	SPECjbb2005
	SQL Server Database Hammer
	Citrix XenApp

