
The Java programming language
promises portable, secure execution
of applications. Early Java implemen-

tations relied on interpretation, leading to
poor performance compared to compiled
programs. Compiling Java programs to the
native machine instructions provides much
higher performance. Because traditional
compilation would defeat Java’s portability
and security, another approach is necessary.

This article describes some of the impor-
tant issues related to just-in-time, or JIT,
compilation techniques for Java. We focus
on the JIT compilers developed by Sun for
use with the JDK (Java Development Kit) vir-
tual machine running on SPARC and Intel
processors. (Access the Web at www.sun.
com/workshop/java/jit for these compilers
and additional information.) We also discuss
performance improvements and limitations
of JIT compilers. Future Java implementa-
tions may provide even better performance,
and we outline some specific techniques that
they may use.

Java execution model
The Java Virtual Machine (JVM) assures

Java application portability and security. The
JVM provides a well-defined runtime frame-
work in which Java programs are compiled
for a hypothetical instruction set architec-
ture.1 Programs are distributed in this
abstract form, divorced from the details of
any other computer architecture. Running a
Java program involves either interpreting
JVM instructions, compiling them into
instructions of the underlying hardware, or
directly executing them in a hardware imple-
mentation of the JVM.

The JVM is a stack machine. Each instruc-
tion gets its operands from the top of a stack,
consuming those values and optionally
replacing them with a result. The instruc-
tions themselves are encoded in a compact

form of variable length, with the shortest
instructions occupying 1 byte and most
instructions being 1 to 3 bytes long. This
form of encoding is known as bytecode.
Previous systems such as the UCSD Pascal
System and most Smalltalk implementations
have used similar bytecodes.

A Java source-to-bytecode compiler, such
as the javac program of the JDK, compiles
the classes that constitute a Java program.
The compiler translates methods in each
source class into bytecode instructions and
places all the bytecodes for a class together
in a class file.

To run a Java program, the JVM loads the
class file containing the program’s entry
point, and execution begins. The program
may reference other class files, which are
loaded in turn (possibly across a network).
Hence, the final association of class files to
form a running program takes place as exe-
cution proceeds. To maintain the integrity
of the Java execution model, the JVM checks
that a variety of semantic constraints are met,
both within a class file and between class
files. For example, bytecode from one class
cannot access a field defined in another class
unless explicitly permitted by the access
specification in the field definition. As anoth-
er example, when an integer is pushed onto
the stack, all bytecodes that refer to that
value must treat it as an integer, and not, say,
as an object reference.

As part of a program’s execution, the JVM
must provide various services. It must man-
age memory, allowing programs to create
objects and reclaiming objects once they are
no longer required (a process known as
garbage collection).2 Java also allows inter-
operation with machine code created from
other source languages (such as C), that is
encapsulated to appear to a Java program as
Java methods. Therefore, the JVM must also
mediate between Java methods and these

36 IEEE Micro 0272-1732/97/$10.00 © 1997 IEEE

To improve Java

program

performance, recent

implementations use

JIT compilation

techniques rather

than interpretation.

COMPILING JAVA
JUST IN TIME

Timothy Cramer

Richard Friedman

Terrence Miller

David Seberger

Robert Wilson

Mario Wolczko

Sun Microsystems, Inc.

.

native methods, converting data representations and man-
aging the flow of control into and out of native methods.

Why compile just in time?
Interpreting bytecodes is slow. In software, the JVM inter-

preter must fetch, decode, and then execute each bytecode in
turn. Consider, for example, how the interpreter evaluates the
expression x = y + (2 ∗ z), where x, y, and z are local variables
containing integers. Figure 1 shows the Java bytecodes cor-
responding to this expression. The first three bytecodes push
y, the integer constant 2, and z onto the operand stack. The
imul bytecode multiplies the two values at the top of the stack
and replaces them with the result. At that point, the stack con-
tains y and (2∗ z). The iadd bytecode then adds those values
and stores the result on the stack. Finally, the istore instruction
moves the value on the stack into local variable x.

Evaluating this simple expression involves not only per-
forming the operations specified by the expression but also
decoding six bytecodes, pushing five values onto the
operand stack, and then popping them off again. It is no sur-
prise that Java programs are slow when executed in this way.

One solution is to build a hardware implementation of the
JVM. This certainly removes the overhead of decoding
instructions in software. It does not, however, address the
problem of portable execution on existing processors.

To improve performance on an existing processor, one
can compile the bytecodes into efficient instruction
sequences for the underlying machine. Performing this com-
pilation prior to runtime and loading the program as native
code would eliminate the portability and security of Java pro-
grams. On the other hand, compiling at runtime preserves
these important properties. The program can still be distrib-
uted in platform-independent class files, and the bytecodes
can still be verified prior to compilation. As long as the com-
piler includes the essential runtime security tests, the com-
piled program is as secure as if it were interpreted.

One potential drawback of this approach is that time spent
compiling a method is time that could have been spent inter-
preting its bytecodes. For an overall gain in speed, we need
to amortize the cost of compilation over the subsequent exe-
cutions of the method in its faster, machine code form.
Therefore, compilation speed is crucial. This is a very dif-
ferent situation from that facing a traditional, static compil-
er. Typically, having a fast compiler is a convenience to the
programmer, but a compiler’s speed is immaterial to the user.
Programmers will wait for slow, optimizing compilers if their
users benefit from faster execution. In contrast, the user pays
the price of compilation when it occurs at runtime.

To minimize overhead, we can avoid compiling a method
until it is certain that it will be executed. (Not all methods in
a class file will execute; typically less than half execute in any
run of a program.) The obvious strategy is to compile meth-
ods only when they are first executed, in other words, just in
time. Deutsch and Schiffman pioneered this form of JIT com-
pilation in a highly successful implementation of Smalltalk.3

A JIT compiler must be fast enough to recoup the time spent
in compilation in as few executions of the code as possible.
Compilation speed is also important for minimizing start-up
delays. If the compiler is slow, compilation will dominate the

starting phase of the program, and the user must wait.

Compiling Java to native code
Compared to traditional static compilers, JIT compilers per-

form the same basic task of generating native code, but at a
much faster rate. Static compilers can afford to spend much
more time performing optimizations. The challenge for JIT
compilers is to find ways to generate efficient code without
incurring the expense of traditional optimization techniques.
Performance is not the only issue: The compiled code must
correctly implement the behavior required by the JVM spec-
ification.1 To follow that specification exactly requires spe-
cial consideration in several aspects of JIT compilation.

Minimizing compilation overhead. Avoiding unneces-
sary overhead is crucial for fast compilation. In many com-
pilers, constructing an intermediate representation (IR) of a
method is a standard process. When compiling from Java
bytecodes, however, we can eliminate that overhead. The
bytecodes themselves are an IR. Because they are primarily
designed to be compact and to facilitate interpretation, they
are not the ideal IR for compilation, but they can easily be
used for that purpose.

A compiler IR should preserve all the source-level infor-
mation relevant for optimization and native code generation,
while hiding irrelevant syntactic details. Java bytecodes com-
bined with other information from Java class files satisfy these
criteria. Java class files retain almost all the information from
Java source files, as evidenced by the quality of the output
from class file decompilers and by the emergence of tools to
obscure the class file information. Only a few kinds of infor-
mation are lost in the translation to bytecodes. For example,
the JVM does not contain a Boolean type, so Boolean vari-
ables cannot be distinguished from integers.

The bytecodes also do not guarantee preservation of the
structured control flow of Java programs. Relying on struc-
tured control flow can often simplify the implementation of
many compiler optimizations. The possibility of unstructured
control flow in bytecodes may complicate the task of a JIT
compiler, but that is a relatively minor problem. For the most
part, Java bytecodes provide exactly the information neces-
sary for effective compilation.

The stack-oriented nature of bytecodes is well suited for
interpretation but not for efficient execution on register-based
processors. Explicit use of a stack would introduce runtime
overheads and would fail to take advantage of the proces-
sor registers. So, rather than treating bytecodes as literal
descriptions of the code to be executed, a JIT compiler can
use them as implicit encodings of expressions.

May/June 1997 37

iload y
iconst 2
iload z
imul
iadd
istore x

Figure 1. Bytecodes for x = y + (2 ∗ z).

.

Traditional compilers often represent expressions as direct-
ed acyclic graphs (DAGs).4 Each vertex in a DAG specifies
a single operation with the operand values specified by the
outgoing edges. For example, Figure 2 shows the DAG for
x = y + (2 ∗ z). (This example uses every value exactly once,
so the DAG is actually a tree. The Java bytecode called dup
allows intermediate results to have multiple uses so that the
expressions correspond to DAGs instead of trees.) Each DAG
edge corresponds to a particular intermediate result of a com-
putation, which can be stored in a register, a temporary vari-
able, or, in the case of Java bytecodes, on an operand stack.

The bytecodes for an expression encode the same infor-
mation represented in a DAG. For example, the bytecodes
shown earlier in Figure 1 evaluate the same expression
shown as a DAG in Figure 2. A JIT compiler could easily
convert the bytecodes to DAGs, but it is more efficient to
generate code directly from the bytecodes.

Generating efficient code. There are three major issues
associated with transforming bytecodes directly into efficient
machine instructions:

• The use of the operand stack constrains the order of eval-
uation specified by the bytecodes. More efficient order-
ings may be possible with a register-based processor.

• The best choice of machine instructions for a particular
bytecode may depend on how the result of that byte-
code is used.

• The bytecodes may include redundant operations.

There may be more than one possible order of evaluation
for a given DAG, and the bytecode ordering may not be the
optimal choice. Other orderings may require less storage to
hold intermediate results. For example, reordering the byte-
codes in Figure 1 to load variable y after performing the mul-
tiplication reduces the maximum stack size from three to
two. In native code, that may increase performance by allow-
ing more values to be stored in processor registers. Changing
the evaluation order requires some care, though. The Java
language specifies a particular evaluation order for expres-
sions so that a compiler can only reorder operations in ways
that conform to the specification.

Some bytecodes are best translated to machine instruc-
tions in combination with the bytecodes that use their results.
For example, the iconst bytecode pushes an integer constant
onto the operand stack. Depending on how that constant
value is used, it may be possible to specify the value as an

immediate operand of a machine instruction. This is more
efficient than storing the constant into a register. The same
idea applies to several other bytecodes.

Bytecodes often include redundant computations within
a single basic block. For example, bytecodes may load the
same value from the constant pool several times. Also, a local
variable may be pushed onto the operand stack more than
once, and so on. Eliminating redundancies is an important
optimization. Finding redundancies within a basic block is
quite inexpensive and often provides a noticeable improve-
ment in performance. However, detecting redundant com-
putations across basic blocks can be more expensive, and it
is not clear that a JIT compiler should attempt it.

Some redundancies are due to array bounds checking.
Java requires that all array accesses be checked to ensure
that the indices are within the bounds of the array.
Performing those checks at runtime can significantly degrade
performance of programs that use many array accesses. If
the same array element is accessed more than once in a basic
block, only the first access requires bounds checking. We
remove the redundant bounds checks for the other access-
es of that element. Future compilers may perform more
advanced analyses to eliminate unnecessary bounds checks.

The code generation technique used in Sun’s JIT compil-
ers addresses each of these three issues. The basic idea is
simple. The compiler steps through the bytecodes in a basic
block one at a time. For bytecode operations whose order
of evaluation is constrained by the Java specification, the
compiler emits native code. For other bytecodes, however,
it merely records the information necessary to generate native
code. It delays producing the code until it reaches the byte-
code using the result. This delayed emission of code allows
the compiler to reorder computations to reduce the amount
of temporary storage required. It also makes it easy for the
code generator to take into consideration how the result val-
ues are used. To remove redundant operations, the compil-
er keeps track of which operations have already been
performed at each point in a basic block.

As the compiler steps through the bytecodes, it essential-
ly simulates their execution, keeping information about the
values on the operand stack at every point. The compiler uses
its own stack, which mirrors the runtime status of the operand
stack. Instead of holding runtime values, the compile-time
stack records information about the intermediate results of
the computation. If the code to produce a value has not yet
been emitted, the entry on the compile-time stack records
the operations that need to be performed. Otherwise, it spec-
ifies the register or memory location that holds the value.

As an example, consider the process of generating SPARC
instructions for the bytecodes from Figure 1. As the compiler
steps through the first three bytecodes, it pushes three entries
onto the compile-time stack. Figure 3 shows the contents of
the stack at that point, assuming that local variables y and z
have been allocated to registers L2 and L3. When the compil-
er encounters the multiplication bytecode, it emits code to
perform that operation. The top two entries on the compile-
time stack specify the operands. The constant integer 2 can be
included as an immediate operand. A register, L0 in this case,
must be selected to hold the intermediate result. The compil-

38 IEEE Micro

JIT

istore x

iadd

iconst 2

iload y imul

iload z

Figure 2. DAG representation of x = y + (2 ∗ z)

.

er than emits the instruction smul L3, 2 → L0 results and
updates the compile-time stack, as shown in Figure 4.

The compiler processes the addition in a similar manner.
If local variable x was allocated to a register (for example,
L1), the result of the addition can be placed directly in that
register. The result in that case is the instruction add L2,

L0 → L1. This example demonstrates how a JIT compiler
removes interpretation overhead, reducing the entire expres-
sion to as few as two SPARC instructions.

So far, we have focused on the compilation process with-
in a single basic block; handling block boundaries requires
some additional effort. Besides holding the intermediate val-
ues in an expression evaluation, the operand stack may also
hold values across basic block boundaries. To avoid gener-
ating code with explicit stack operations, a JIT compiler must
determine the contents of the operand stack at the entry to
every basic block. Java bytecodes are constrained in such a
way that this is fairly easy to do. Because of security con-
cerns, the operand stack must always have the same con-
figuration every time a particular bytecode executes. That is,
the stack must have the same height and must contain the
same kinds of values. The JVM verifier checks that this con-
straint is always satisfied. One quick pass over the bytecodes
in a method is sufficient for the JIT compiler to find the stack
configuration at the start of each basic block. The values on
the stack can then be allocated to registers or memory.

Correctness. Every JVM implementation must provide
the correct behavior required by the JVM specification. The
presence of a JIT compiler does not alter that requirement.
In many ways, a Java compiler is no different from any other
compiler in this regard. However, to ensure the portability of
Java programs across different JVM implementations, the JVM
specification includes many details that other language spec-
ifications may omit. We mention only a few examples here.

• When a thread runs out of stack space, the JVM must
throw a special Java exception to report the problem.

• The user-specified initialization code for a class must
execute when a class is first referenced. This adds sig-
nificant complexity to a JIT compiler. (See the box on
constant pool resolution.)

• Java requires that floating-point arithmetic use the IEEE-
754 specification with 64-bit “double” values and 32-bit
“float” data types. On Intel processors, which use 80-bit
floating-point arithmetic, each intermediate floating-
point result must be truncated properly.

Interactions with the JVM
Code compiled by a JIT compiler must interact with the

JVM in a number of ways:

• Some bytecodes, such as those involving memory allo-
cation or synchronization, are translated into calls to
JVM routines.

• Method calls in compiled code may invoke the JVM
interpreter, either directly by calling methods that for

May/June 1997 39

Top Register L3 (z)

Integer 2

Register L2 (y)

Figure 3. Compile-time stack before the multiplication.

Top Register L0 (2∗z)

Register L2 (y)

Figure 4. Compile-time stack after the multiplication.

Constant pool resolution
A class file contains more than just bytecodes. One of

the more important additional structures is the constant
pool. In addition to holding numeric values that are too
big to fit into bytecodes, the constant pool holds refer-
ences to fields and methods in other classes.

A constant pool reference to another class initially just
identifies the class by name. When the interpreter first
uses that constant pool entry, it resolves the entry to
directly reference an internal data structure in the JVM
that describes the other class. If that class has not been
previously used, resolving the constant pool entry caus-
es it to be loaded and initialized.

The constant pool resolution mechanism serves an
important role in the execution of a Java program. A
JVM implementation is not allowed to execute a class’s
initialization code until that class is actually used. The
interpreter resolves entries in the constant pool the first
time it evaluates a bytecode referencing that entry. This
ensures that classes are initialized at the proper times.
After a particular bytecode has been evaluated once,
there is no need for subsequent evaluations to resolve
the constant pool entry. To avoid the overhead of doing
so, the interpreter replaces the original bytecode with a
“quick” version of the same operation. Later, when eval-
uating a quick version of a bytecode, the interpreter can
safely assume that the constant pool entry has already
been resolved.

Compiled Java code must address this same issue.
When the compiled code first uses a particular constant
pool entry referring to another class, it must call a rou-
tine in the JVM to resolve the entry. Resolving the entry
at compilation time is not legal: It must happen when the
compiled code executes. Programs that rely on proper
initialization behavior might not run correctly if the con-
stant pool entries are resolved too early. The compiler
can easily generate a call to resolve the constant pool
entry, but we only want to execute that call once. Our
solution is analogous to the interpreter’s use of “quick”
bytecodes. We use self-modifying code to remove the
call after it first executes.

.

some reason are not compiled, or indirectly by calling
native methods that in turn invoke the interpreter.

• Entries in the constant pool must be resolved when they
are first referenced. This may involve extensive work in
the JVM to load and initialize new classes. (See the box.)

• In a number of situations, the JVM needs to examine
the execution stack for Java methods. Exception han-
dling and garbage collection are primary examples. The
JVM must locate the stack frames for compiled meth-
ods and know the format of the data within each frame.

The main issue in these interactions is reducing the over-
head of method invocations. The calling convention used by
the interpreter is too inefficient for compiled code. A JIT com-
piler can use its own calling convention as long as it contin-
ues to support all the essential interactions with the JVM.

Reducing call overhead. Each thread in the JVM has two
separate stacks. The thread stack holds the stack frames for
native methods and the routines within the JVM itself. The
Java stack contains the stack frames for interpreted methods.
Java stacks consist of a number of noncontiguous segments.
(For platforms without virtual memory, dividing the Java
stacks into segments allows them to start small and expand
as necessary.)

For efficiency, JIT-compiled code uses the thread stack
rather than the Java stack. Because the Java stack is divided
into noncontiguous segments, creating a new Java stack
frame requires an extra check for sufficient space in the cur-
rent stack segment. In contrast, adding a stack frame on the
thread stack typically requires a single instruction to adjust
the stack pointer, relying on the virtual memory system to
detect stack overflows.

Besides avoiding the cost of handling noncontiguous seg-
ments in the Java stack, using the thread stack for compiled
code avoids another significant source of overhead. The JVM
expects each frame on the Java stack to contain a number of
fields to facilitate operations such as exception handling and
garbage collection. The runtime cost of initializing those
fields when creating a new stack frame is not significant com-
pared to the overhead of interpretation. For compiled code,
however, it is relatively expensive. By using the thread stack,
the compiled code can use its own stack frame layout with
minimal initialization cost.

Compiled code also uses a different calling convention
than interpreted methods. The interpreter relies on use of
the Java stack to pass arguments. Outgoing arguments are
pushed onto the operand stack. The new frame for the callee
overlaps with the portion of the operand stack containing
the arguments, so that the incoming arguments appear at the
beginning of the callee’s frame. When the callee returns, it
stores the return value onto the caller’s operand stack. Since
the compiled code does not use the Java stack and since
frames on the thread stack do not overlap, some other means
of passing arguments is necessary. Moreover, for systems
where the native calling convention supports passing argu-
ments and returning values in registers, the compiled code
should take advantage of this to improve the performance of
method invocations. Our solution is to use the native calling
convention for each platform.

To allow compiled and interpreted methods to coexist, we
must translate between the different calling conventions at
every transition between the interpreter and compiled code.
Even without a JIT compiler, a similar situation arises when
calling native methods. The solution for native methods is
to insert stub routines between the interpreter and the native
code. A native method stub reads the incoming arguments
from the Java stack and places them in registers or on the
thread stack according to the native calling convention.
When the native method returns, the stub stores the return
value back onto the Java stack. The stubs for compiled meth-
ods perform the same functions. An advantage of using the
native calling convention for compiled methods is that tran-
sitions from compiled code to native methods can be much
more efficient. Since they both use the same calling con-
vention, only a very minimal stub routine is necessary.

Garbage collection. The JVM uses automatic memory
management to relieve programmers of the burden of pro-
viding explicit deallocation. Whenever additional memory
is required, the JVM releases storage by reclaiming objects
that are no longer needed. The basic approach of most
garbage collectors is to trace through all the objects that are
reachable. The storage occupied by unreachable objects can
then be reused.

The use of a conservative garbage collector in the current
JDK virtual machine greatly simplifies support for garbage
collection. The garbage collector scans the thread stacks and
the Java stacks, searching for any values that could possibly
be references to objects in the Java heap. It does not use
information about the particular layout of stack frames on
the thread stack, and therefore cannot know which locations
contain object references and which contain raw data (such
as integers). Whenever it sees a bit pattern that may repre-
sent a reference to an object, it must assume that it is a ref-
erence. Thus, the JIT compiler does not need to inform the
garbage collector of the layout of the stack frames for com-
piled methods.

Exception handling. The situation is not so simple for
exception handling. When an exception occurs, the JVM first
searches for a handler in the current method. If one cannot
be found, it pops the last frame off the stack and searches for
a handler in the next method on the stack. It continues this
stack “unwinding” until it finds a handler or there are no
more frames on the stack. When interpreted and compiled
methods are mixed together, there are two separate stacks
to unwind: the Java stack and the thread stack. Both may
contain frames for Java methods. The JVM must interleave the
unwinding of these two stacks.

Beyond simply unwinding the stacks, the exception-
handling code must be able to obtain certain information
from the stack frames. For each frame, it needs to know the
corresponding method and the current point in the execu-
tion of that method to determine if there is a relevant excep-
tion handler at that point. For interpreted methods, that
information resides in the Java stack frames. For compiled
code, the necessary information can be determined from the
return addresses recorded in the thread stack. This avoids
the overhead of recording the information in the stack
frames, but it slows the exception handling. The relative

40 IEEE Micro

JIT

.

infrequency of exceptions in most Java programs justifies
this trade-off.

The compiled code for an exception handler needs to
locate the current values of local variables. This is easy when
each local variable resides in memory at a fixed position in
the stack frame. It is not always so easy when variables are
allocated to registers. If the compiled exception handler
needs the value of a local variable in a particular register, the
exception-handling code must restore the proper value of
that register before transferring control to the handler.

The register windows on SPARC processors make it easy
to find values stored in registers. Each compiled method
essentially has its own set of registers that can be flushed to
known locations in the stack frames when an exception
occurs. For processors without register windows, the calling
convention can have a significant effect on register allocation.
Because of exception handling, we do not allocate variables
to callee-saved registers across method invocation sites. The
interface between compiled code and the JVM is written in
C, so if an exception is thrown from within that C code, we
cannot restore the callee-saved registers to the values they
held in the compiled Java code. We have no way to deter-
mine which locations the C code used to save those values.
Consequently, we cannot globally allocate many variables
to registers for Intel and PowerPC systems, where many of
the registers are callee-saved.

Performance
The performance improvements of JIT compilers vary

widely across different programs. As mentioned earlier, trans-
lating to native code avoids interpretation overhead.
Programs that would otherwise spend almost all their exe-
cution time in the JVM interpreter speed up dramatically. A
JIT compiler, however, does not address the other compo-
nents of a JVM implementation.

To illustrate this point, we have profiled the execution of
the JDK virtual machine. When interpreting the javac pro-
gram with a large compiler written in Java as input, only 68%
of the execution time was spent interpreting bytecodes. No
matter how fast the compiled code, at least one third of the
interpreted execution time will remain. Therefore, a JIT com-
piler cannot speed up the program by more than a factor of
three. The rest of the time is spent in synchronization (18%),
allocating memory and collecting garbage (13%), and run-
ning native methods (1%). We expect future JVM imple-
mentations to improve the performance of these operations,
but that is outside the scope of JIT compilation.

We have evaluated the performance of our JIT compilers
on many benchmarks. Table 1 lists the results for some

microbenchmarks that illustrate the performance of particu-
lar kinds of operations. We collected these numbers with the
JDK 1.0.2 virtual machine on an UltraSPARC I system, run-
ning at 167 MHz under Solaris 2.5.1 (taking the best of three
runs).

The first two microbenchmarks are components of the
CaffeineMark benchmark.5 The Loop test consists of nested
loops that repetitively increment local variables. As evi-
denced by the large speedup, JIT compilers work very well
for this code style, in which the interpretation overhead is the
dominant component of the interpreted execution time. This
is an extreme case. The Graphics test, which primarily exe-
cutes code in native methods, shows the other extreme,
where the JIT compiler has no visible effect.

The last two benchmarks in Table 1 illustrate other limi-
tations of JIT compilers. These microbenchmarks are com-
ponents of the UCSD benchmarks for Java.6 The GC
benchmark measures the performance of the JVM garbage
collection. As expected, the JIT compiler has no effect. The
Exception test measures the performance of exception han-
dling. In this case, the JIT compiler actually makes the per-
formance worse. This reflects our decision to optimize for
the common case where exceptions are not thrown, mak-
ing exception handling considerably more expensive.

The performance with the JIT compiler is somewhat more
consistent for complete programs. Table 2 shows the
speedups measured for several benchmarks using the system
just described. These are typical of the speedups that we
have observed for many programs.

The Richards benchmark is an operating system simulation
program that has been translated to a variety of program-
ming languages. This version, written in a C-like style, has
few virtual calls, and the JIT compiler can speed it up by
almost an order of magnitude. Tomcatv and Compress are
Java versions of the corresponding SPEC benchmarks. Both
of these programs spend most of their execution time in
small loops with frequent array accesses. Our compiler
removes a number of the redundant array bounds checks in
Tomcatv. It is unable to do so for Compress because the
array accesses are in separate methods, but the overall
speedup is still almost as good as for Tomcatv. RayTracer
renders an image using ray tracing. DeltaBlue is a constraint
solver. These programs make extensive use of virtual calls,
and the speedups are somewhat smaller than for the other
benchmarks described here.

We measured the speed of the JIT compilers and found
that they typically require about 700 machine cycles per byte
of input for the SPARC compiler and about 1,300 per byte of

May/June 1997 41

Table 1. JIT compiler microbenchmark results.

Benchmark Speedup over interpretation

CM/Loop 42.5
CM/Graphics 1.0
UCSD/GC 1.0
UCSD/Exception 0.5

Table 2. Speedups for complete programs.

Benchmark Speedup over interpretation

Richards 9.0
Tomcatv 7.3
Compress 6.8
RayTracer 2.2
DeltaBlue 2.1

.

input for the Intel compiler (on a 200-MHz Pentium Pro).
Memory use is another factor to consider with JIT compi-

lation. Not only does the JIT compiler use memory itself, it
also uses memory to hold the compiled code. The SPARC and
Intel compilers themselves require 176 Kbytes and 120
Kbytes. On average, each byte of bytecode translates into 5
bytes of SPARC machine code and 4 bytes of Intel machine
code. The extra space required to hold the compiled code
may limit the use of a JIT compiler on systems with little mem-
ory. Even if there is sufficient memory, the extra space may
affect performance due to increased paging and cache effects.

Beyond JIT compilation
Current JIT compilers can substantially improve perfor-

mance, and future JVM implementations will use more
advanced techniques to realize further performance gains.
Precise garbage collectors can reduce overheads and avoid
the potential inaccuracy of conservative collectors. The JVM
can also selectively compile and optimize the most frequently
executed methods.

Precise garbage collection. Earlier, we mentioned that
the current Sun JIT compilers rely on a conservative, or
imprecise, garbage collector that sweeps the whole heap to
determine if any objects may be reclaimed. This time-
consuming sweep causes disruptive pauses in a program’s
execution. It would be preferable to use a less disruptive
garbage collector that does not require scanning the whole
heap at each reclamation. These collectors are precise, in
that they need to know the exact set of memory locations
that contain object references. (The adoption of the Java
Native Interface in the JDK 1.1 makes this possible by regu-
lating how native methods can access Java objects.)

A compiler must produce extra information for a precise
garbage collector. When precise garbage collection takes
place, the garbage collector must scan the stacks of all exe-
cuting threads checking for object references. The compiler
must emit so-called stack maps to provide information to the
garbage collector to identify which locations in a stack frame
contain these references.

It is prohibitively expensive to store a stack map for every
instruction, but fortunately there is an alternative. Instead of
allowing thread suspension at arbitrary points, we can insist
that a thread be suspended before a collection only at
compiler-specified safe points. Only at safe points do we need
to keep stack maps. To ensure that a thread is at a safe point
when the collector runs, we can modify the thread scheduler.
We can also use break points to advance suspended threads
to safe points prior to a collection (inserting the break points
immediately before collection and removing them thereafter).
Every call site must be a safe point because a collection may
occur before returning from the callee. Additionally, the com-
piler must ensure that every loop contains a safe point to
guarantee that garbage collection is not delayed indefinitely.

Adaptive optimization. Ideally, we would tailor the com-
pilation of a method to the amount of time the program actu-
ally spends in that method. A dynamic compiler can observe
the program as it runs and optimize the most frequenty exe-
cuted models. A simple example is deciding when to compile
based on observed execution frequencies. The bytecode inter-

preter can count how many times a method has been invoked
or a loop iterated. When the count reaches a predetermined
threshold, the interpreter can invoke the compiler.

Recompiling based on observed behavior is a form of
adaptive optimization. This technique was pioneered in the
Self 3.0 Virtual Machine as part of a research project at Sun
Microsystems Laboratories and Stanford University.7 In an
adaptively optimizing system, initial executions of a method
either are interpreted or use a simple compiler. The code is
self-monitoring, using execution counters to detect hot spots.

When a method is found worthy of optimization, the sys-
tem can spend more time on its compilation, hoping to amor-
tize the optimization time in future executions of the method.
Such a method is recompiled with a higher level of opti-
mization. The infrastructure required for adaptive optimiza-
tion is considerably more complex than that of an interpreted
system or simple JIT compiler, but it can potentially provide
much higher levels of performance.

Adaptive inlining. Inlining methods (replacing calls with
the actual code of the called methods) is an important opti-
mization in any program with a high call density and small
methods. Without inlining, the call and return overhead often
dominates the execution of such programs. Furthermore,
method calls inhibit the compiler’s ability to produce effi-
cient code because many optimizations cannot be applied
across method calls.

The use of virtual calls in Java defeats traditional inlining
techniques, because many target methods may exist at a vir-
tual call site. However, as the Self system7 demonstrated, vir-
tual calls need not trouble a dynamic compiler. For some call
sites, the compiler can determine that the call has only one
possible target. For example, the target method may be
declared to be final, ensuring that there are no other candi-
dates. Alternatively, the compiler may observe that there are
no subclasses overriding the target method. In this case, the
runtime system must take note of any subclasses that are
loaded subsequent to compilation and undo inlining deci-
sions if the target method is overridden in any subclass.

A dynamic compiler can inline even virtual calls with more
than one potential target. Typically, most virtual call sites
invoke the same method repeatedly. The runtime system can
note call sites that possess this behavior. The compiler can
emit specialized versions of the method that optimize the com-
mon case yet still retain the ability to deal with the other cases.

JIT COMPILERS CAN PROVIDE dramatic performance
improvements for programs where the vast majority of exe-
cution time would otherwise be spent interpreting bytecodes.
Because JIT compilers do not address the performance of
other aspects of a virtual machine, programs that include
extensive use of synchronization, memory allocation, and
native methods may not run much faster. While a JIT com-
piler is essential for high-performance JVM implementations,
it is not a complete solution.

Java performance will continue to improve in the future.
Better garbage collection techniques and faster synchroniza-
tion will decrease those components of the execution time that
are not addressed by compilation. JIT compilers will evolve to

42 IEEE Micro

JIT

.

incorporate adaptive optimization and inlining. With these and
other techniques, performance is unlikely to remain an obsta-
cle to using Java in the vast majority of applications.

Acknowledgments
Others at Sun Microsystems contributing to this work

include Boris Beylin, Dave Cox, Steve Dever, Bruce Kenner,
Ross Knippel, and Dave Spott. We also acknowledge the ear-
lier work by Dan Grove and Nand Mulchandani. Java and
SPARC are trademarks of Sun Microsystems Inc.

References
1. T. Lindholm and F. Yellin, The Java Virtual Machine Specification,

Addison-Wesley, Reading, Mass., 1996.
2. R. Jones and R. Lins, Garbage Collection: Algorithms for

Automatic Dynamic Memory Management, John Wiley & Sons,
New York, 1996.

3. L.P. Deutsch and A.M. Schiffman, “Efficient Implementation of
the Smalltalk-80 System,” Proc. 11th ACM Symp. Principles of
Programming Languages, Assoc. Computing Machinery, New
York, 1984, pp. 297-302.

4. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1988.

5. CaffeineMark(TM) Version 2.01, Pendragon Software,
www.webfayre.com/pendragon/cm2/.

6. W.G. Griswold and P.S. Phillips, UCSD Benchmarks for Java,
www-cse.ucsd.edu/users/wgg/JavaProf/javaprof.html.

7. U. Hölzle and D. Ungar, “A Third-Generation Self Implemen-
tation: Reconciling Responsiveness with Performance,” Proc.
ACM OOPSLA (Object-Oriented Programming Systems, Lan-
guages, and Applications) 94 Conf., ACM, 1994, pp. 229-243.

Timothy Cramer, a staff engineer at Sun,
currently works on just-in-time compilers
for Solaris/NT Intel and Solaris SPARC. He
holds a BS degree in math and computer
science from the University of Wisconsin,
Eau Claire. He is a member of the ACM.

Richard Friedman is a senior technical
writer at Sun Microsystems and is project
lead for developer products documenta-
tion. Specializing in programming lan-
guages and supercomputing, he holds a
BS in mathematics from the Polytechnic
Institute of Brooklyn, and is a member of

the ACM SIGDOC, IEEE Computer Society, and the Society
for Technical Communication.

Terrence Miller is a senior staff engineer
at Sun Microsystems and is project lead
for JIT compiler development. His
technical interests include processor
architecture, compilation technology, and
development environments.

Miller holds a PhD in computer science
from Yale University and is a member of the IEEE and the ACM.

David Seberger is a manager at Sun
Microsystems, where he currently man-
ages the JIT compiler efforts. Technical
interests include compiler optimizations
for retargetable multilanguage systems.

Seberger holds an MS in computer
science from the University of California at

Davis.

Robert Wilson is an engineer at Sun
Microsystems. He is currently working on
high-performance Java virtual machines
and on completing his PhD dissertation
at Stanford University. He is a member of
the ACM.

Mario Wolczko is a senior staff engineer
at Sun Microsystems Laboratories. His
technical interests include software and
hardware implementations of object-
oriented languages.

Wolczko holds a PhD in computer sci-
ence from the University of Manchester

and is a member of the IEEE and the ACM.

Direct questions concerning this article to David Seberger,
Sun Microsystems, Inc., MS UMPK16-303, 2550 Garcia
Avenue, Mountain View, CA 94043; seberger@enc.sun.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service card.

Low 162 Medium 163 High 164

May/June 1997 43

.

