CSL862 Minor1 Exam
Advanced Topics in Software Systems
Sem |, 2013-14
August 29, 2013
Answer all 5 questions Max. Marks: 44

1. Answer True/False. Give reasons. No marks if no reason (or incorrect reason) given.
a. Without using the happens-before graph, it is possible for the CHESS
algorithm to never finish on a program (assume that the program is
terminating and CHESS algorithm finishes when using the happens-before

graph). Explain with examples if needed. [4]

False. Happens-before graph is only used to prune the search space, as an
optimization. CHESS algorithm is guaranteed to finish (albeit sometimes with
a very large running time) if the program itself is guaranteed to terminate.

No marks if explain what a happens before graph is, but give no reason why
this can not happen. 2 marks if vague explanation, but in right direction. Also,
no marks for “True” answer.

b. Consider a program using Dthreads: Adding an extra non-synchronization
instruction to the middle of this program can cause the interleaving behaviour
of the program to change. Explain with example, if needed. [4]
Accept both answers below:
False. If the extra non-synchronization instruction does not alter the control
flow of the program, the interleaving behaviour of the program will not change.

True. If the extra non-synchronization instruction alters the control flow of the
program, the interleaving behaviour can change.

For example,

Thread 1

at+

lock()

unlock()

Thread 2
if(@==1){
lock()
unlock();
}
(In case of the second answer, the example should be relevant. 2 marks if
example is not relevant)
2. Consider Derandomized-PCT where a deterministic and systematic exploration of the
schedules is performed in increasing order of bug depth. i.e., first all schedules to uncover
depth-1 bugs are explored exhaustively, then all schedules to uncover depth-2 bugs are



explored exhaustively, then all schedules to uncover depth-3 bugs are explored exhaustively,
andsoon...
a. Assume a program with n threads and a total of k instructions. After how many
schedules (in order notation) are we guaranteed to find a bug of depth d? [4]
O(nk*")

b. Give an example of a program with a bug, such that the bug is of depth 2 and requires
at least 2 pre-emptive context switches to be exposed (in CHESS). The program
need not do anything useful. You can use the ASSERT statement in your program,
where an assertion failure indicates a bug. [8]

Thread 1
Set(e);
a = NULL; ... (2)

Thread 2

Wait(e);

if (@a!=NULL) { .. (1)
ASSERT(a); //proxy for *a ... (3)

}

This is a depth 2 bug with dependencies (1) — (2) — (3)

But it also requires two preemptive context switches to manifest. The first before
statement (2) and the second before statement (3).

Notice that if there were no Wait/Set statements, this bug could have been uncovered
with 1 preemptive context switch.

6 marks if use “exit()” syscall to construct an example.

c. Give an example of a program with a bug, which will be found sooner with CHESS
than with Derandomized-PCT? The program need not do anything useful. You can
use the ASSERT statement in your program, where an assertion failure indicates a
bug. [8]

Consider a program with (n+1) threads, and assume that initially a = 0.



Thread 1:
if (@ ==0){
a=1;

}

Thread 2:
if (@==1){

a=2;

Thread n:
if(@a==n-1){
a=n;

}

Thread (n+1):
ASSERT(a != n);

This is a bug with depth (n+1) exposed only with the following ordering constraints:
Thread 1 — Thread 2
Thread 2 — Thread 3

Thread n — Thread (n+1)

This bug will be found (or is guaranteed to be found) by Derandomized-PCT only
when exploring schedules uncovering depth-n bugs. On CHESS however, the bug will
definitely be found at c = 0 (after n! schedules).

3. PRES works by recording certain sources of non-determinism (e.g., result of
synchronization operations) and ignoring others (e.g., data races). During replay, it explores
the search space of the unrecorded non-determinism to try and reproduce the bug that
caused a failure during production run. Answer the following questions
a. During replay, the “feedback generator” generates feedback for future replays. What
kind of feedback is generated, and how is it used? [4]
PRES generates feedback on what non-deterministic choice should be tried next (for



data races only, as other non-deterministic choices have already been recorded).

b. While searching for the bug during replay, does it make sense to use
context-bounding (from CHESS)? If so, how and why? If not, why not? [6]
Yes, it makes sense to use context bounding. The problem at hand is to search for a
schedule (among the possible interleavings of the unrecorded non-determinism, i.e.,
data races) that matches the recorded log and reproduces the bug. Because bugs
are still likely to be of types that can be exposed at low ‘c’ values (assuming
non-adversarial bugs), using context bounding (i.e., searching the schedule space in
increasing order of ‘c’) should allow us to find a matching schedule faster.

2 marks if wrong answer but show understanding of the PRES approach and of the
question.

4. Consider the following program:

intx=1,y=2;
thread_fork(child_thread);

parent thread child thread
X=Yy; y =X

thread_join(child_thread);
printf(“x=%d, y=%d\n”, x, y);



Assume that the statements “x = y” (or “y = x”) atomically move the contents from memory
location ‘y’ to memory location X’ (or from memory location ‘x’ to memory location ‘y’
respectively).

What are the possible final contents of x and y with

a. pthreads?

b. dthreads?
Explain. [4]
a. (x=1,y=1)if child thread executes before parent thread

or (x =2,y = 2)if parent thread executes before child thread.

b. x =2,y = 1. Because each thread starts with a private copy of the memory, the net effect
would be of the values getting swapped.

5. Translation validation: What is a simulation relation? How is it verified? [2]

A simulation relation is the set of elements (PCs, PCt, E) defined on two programs ‘S’ and ‘T’
such that:

if S is at instruction PCs and T is at instruction PCt, E is true, then the programs are
equivalent.

E is a boolean expression involving variables live at PCs and PCt.
A simulation relation can be verified by using symbolic execution and Satisfiability solvers.

Deduct 1.5 marks if the definition of a simulation relation is incorrect.
Deduct 0.5 marks if the verification method is incorrectly explained.



